Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide...This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.展开更多
We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this ...We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this article, we discuss the relaxation of such problem.展开更多
Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,...Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.展开更多
This paper studies a new form of transportation network design problem. In urban transportation network, unreasonable phenomenon can occur in certain traffic period (e.g. on/off duty period), which demonstrates that...This paper studies a new form of transportation network design problem. In urban transportation network, unreasonable phenomenon can occur in certain traffic period (e.g. on/off duty period), which demonstrates that the flows of opposite directions on a two-way road are seriously asymmetric; one traffic link of a two-way road congest heavily but the other is hardly used. In order to reduce transportation congestion and make full use of the existing road resources, we propose a lane reallocating approach in peak period, and establish a discrete hi-level programming model for the decision-making. Then, based on particle swarm optimization (PSO) technique, a heuristic solution algorithm for the hi-level model is designed. Finally, the lane reallocating approach is demonstrated through a simple transportation network.展开更多
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but...This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.展开更多
Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermo...Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.展开更多
Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as wel...Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as well as real-world application problems.The Social Group Optimization(SGO)algorithm is a new metaheuristic bioinspired algorithm inspired by human social behavior that attracted researchers due to its simplicity and problem-solving capability.In this study,to deal with the problems of low accuracy and local convergence in SGO,the chaos theory is introduced into the evolutionary process of SGO.Since chaotic mapping has certainty,ergodicity,and stochastic property,by replacing the constant value of the self-introspection parameter with chaotic maps,the proposed chaotic social group optimization algorithm increases its convergence rate and resulting precision.The proposal chaotic SGO is validated through 13 benchmark functions and after that 9 structural engineering design problems have been solved.The simulated results have been noticed as competent with that of state-of-art algorithms regarding convergence quality and accuracy,which certifies that improved SGO with chaos is valid and feasible.展开更多
Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on met...Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges.Among the state-of-the-art algorithms,Differential Evolution(DE)is one of the most successful algorithms and is frequently used to solve various industrial problems.Over the previous 2 decades,DE has been heavily modified to improve its capabilities.Several DE variations secured positions in IEEE CEC competitions,establishing their efficacy.However,to our knowledge,there has never been a comparison of performance across various CEC-winning DE versions,which could aid in determining which is the most successful.In this study,the performance of DE and its eight other IEEE CEC competition-winning variants are compared.First,the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions,and the performances have been compared.One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems,out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite,have been solved to compare the performances.Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability statistically.Performance analysis exposes that none of the DE variants can solve all the problems efficiently.Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangi...We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.展开更多
This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.Th...This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integralwhich is defined on a free interface. One also allows other constraints such as volumes of partitioning sets. One establishes the existence and regularity theory, in particular, the regularityof the free interface of such problems.展开更多
A chaotic algorithm for providing a solution to the bi-level Discrete Equilibrium Network Design Problem (NDP) is discussed following an introduction of the Discrete Network Design Problem (DNDP) model and Chaos O...A chaotic algorithm for providing a solution to the bi-level Discrete Equilibrium Network Design Problem (NDP) is discussed following an introduction of the Discrete Network Design Problem (DNDP) model and Chaos Optimization Algorithms (COA). A description of the chaotic approach for the DNDP model is described in details. Then a numerical example for the DNDP is carried out to investigate the chaotic approach. The results have been encouraging, indicating that the chaotic approach has great potential ability in finding the optimal solution of DNDP models.展开更多
In this paper, a bi-level formulation of the continuous network design problem (NDP) is proposed on the basis of logit stochastic user equilibrium (SUE) assignment with elastic demand. The model determines the link ca...In this paper, a bi-level formulation of the continuous network design problem (NDP) is proposed on the basis of logit stochastic user equilibrium (SUE) assignment with elastic demand. The model determines the link capacity improvements by maximizing net economic benefit while considering changes in demand and traffic distribution in network. The derivatives of equilibrium link flows and objective function with respect to capacity expansion variables, which are analytically derived, can be computed without having to first find path choice information. These derivatives are employed to develop a quasi Newton algorithm with the BFG S (Broyden- Fletcher- Goldfarb-Shanno) formula for solving the nonlinear, nonconvex but differentiable SUE-constrained network design problem. The SUE assignment with elastic demand is solved by using the method of successive averages in conjunction with Bell’s matrix inversion logit assignment method. Simple and complex example networks are presented to illustrate the model and the algorithm.展开更多
We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem sh...We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.展开更多
Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborativ...Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborative design be feasible to solve MPPS. As the key technology of col-laborative design of MPPS, a task collaboration algorithm is then proposed. To develop the applica-tion framework of collaborative design, applied unified process(AUP) is proposed based on rational unified process(RUP). Then AUP is used to develop the collaborative design platform, whose function framework is constructed according to the process of project management. Finally three MPPS are solved on this platform and the results suggest that the proposed model, algorithm and framework be feasible.展开更多
This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software sy...This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.展开更多
A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum sol...A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.展开更多
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
文摘This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.
文摘We study a Dirichlet optimal design problem for a quasi-linear monotone p-biharmonic equation with control and state constraints. We take the coefficient of the p-biharmonic operator as a design variable in . In this article, we discuss the relaxation of such problem.
基金supported by Grant(42271391 and 62006214)from National Natural Science Foundation of Chinaby Grant(8091B022148)from Joint Funds of Equipment Pre-Research and Ministry of Education of China+1 种基金by Grant(2023BIB015)from Special Project of Hubei Key Research and Development Programby Grant(KLIGIP-2021B03)from Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing.
文摘Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.
基金This work was supported in part by National Natural Science Foundation of China under Grant Nos. 70631001, 70481088 and 7067.1008, and by Doctoral Station Grant No.(20050004005) of Ministry of Education, China.
文摘This paper studies a new form of transportation network design problem. In urban transportation network, unreasonable phenomenon can occur in certain traffic period (e.g. on/off duty period), which demonstrates that the flows of opposite directions on a two-way road are seriously asymmetric; one traffic link of a two-way road congest heavily but the other is hardly used. In order to reduce transportation congestion and make full use of the existing road resources, we propose a lane reallocating approach in peak period, and establish a discrete hi-level programming model for the decision-making. Then, based on particle swarm optimization (PSO) technique, a heuristic solution algorithm for the hi-level model is designed. Finally, the lane reallocating approach is demonstrated through a simple transportation network.
文摘This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR17E080002), the National Natural Science Foundation of China (Nos. 51508505, 71771198, 51338008, and 51378298), the Fundamental Research Funds for the Central Universities, China (No. 2017QNA4025), and the Key Research and Development Program of Zhejiang Province, China (No. 2018C01007)
文摘Network design problems (NDPs) have long been regarded as one of the most challenging problems in the field of transportation planning due to the intrinsic non-convexity of their bi-level programming form. Furthermore, a mixture of continuous/discrete decision variables makes the mixed network design problem (MNDP) more complicated and difficult to solve. We adopt a surrogate-based optimization (SBO) framework to solve three featured categories of NDPs (continuous, discrete, and mixed-integer). We prove that the method is asymptotically completely convergent when solving continuous NDPs, guaranteeing a global optimum with probability one through an indefinitely long run. To demonstrate the practical performance of the proposed framework, numerical examples are provided to compare SBO with some existing solving algorithms and other heuristics in the literature for NDP. The results show that SBO is one of the best algorithms in terms of both accuracy and efficiency, and it is efficient for solving large-scale problems with more than 20 decision variables. The SBO approach presented in this paper is a general algorithm of solving other optimization problems in the transportation field.
文摘Till now,several novel metaheuristic algorithms are proposed for global search.But only specific algorithms have become popular or attracted researchers,who are efficient in solving global optimization problems as well as real-world application problems.The Social Group Optimization(SGO)algorithm is a new metaheuristic bioinspired algorithm inspired by human social behavior that attracted researchers due to its simplicity and problem-solving capability.In this study,to deal with the problems of low accuracy and local convergence in SGO,the chaos theory is introduced into the evolutionary process of SGO.Since chaotic mapping has certainty,ergodicity,and stochastic property,by replacing the constant value of the self-introspection parameter with chaotic maps,the proposed chaotic social group optimization algorithm increases its convergence rate and resulting precision.The proposal chaotic SGO is validated through 13 benchmark functions and after that 9 structural engineering design problems have been solved.The simulated results have been noticed as competent with that of state-of-art algorithms regarding convergence quality and accuracy,which certifies that improved SGO with chaos is valid and feasible.
文摘Because of their superior problem-solving ability,nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems.Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges.Among the state-of-the-art algorithms,Differential Evolution(DE)is one of the most successful algorithms and is frequently used to solve various industrial problems.Over the previous 2 decades,DE has been heavily modified to improve its capabilities.Several DE variations secured positions in IEEE CEC competitions,establishing their efficacy.However,to our knowledge,there has never been a comparison of performance across various CEC-winning DE versions,which could aid in determining which is the most successful.In this study,the performance of DE and its eight other IEEE CEC competition-winning variants are compared.First,the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions,and the performances have been compared.One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems,out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite,have been solved to compare the performances.Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm’s ability statistically.Performance analysis exposes that none of the DE variants can solve all the problems efficiently.Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2010CB732501)National Natural Science Foundation of China(Grant No.11071268)China Scholarship Council Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No.KM201210005033)
文摘We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.
文摘This paper studies a class of variational problems which involving both bulk and surfaceenergies. The bulk energy is of Dirichlet type though it can be in very general forms allowingunknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integralwhich is defined on a free interface. One also allows other constraints such as volumes of partitioning sets. One establishes the existence and regularity theory, in particular, the regularityof the free interface of such problems.
基金This project is supported partly by National 0utstanding Young Investigation of National Natural Science Foundation of China(70225005,70471088,70501004 and 70501005), the Special Research Found for Doctoral Programs in State Education Ministry (20050004005), the 211 Project of Discipline Construction of Beijing Jiaotong University and Rencai Foundation of Beijing Jiaotong University (2003RC010)
文摘A chaotic algorithm for providing a solution to the bi-level Discrete Equilibrium Network Design Problem (NDP) is discussed following an introduction of the Discrete Network Design Problem (DNDP) model and Chaos Optimization Algorithms (COA). A description of the chaotic approach for the DNDP model is described in details. Then a numerical example for the DNDP is carried out to investigate the chaotic approach. The results have been encouraging, indicating that the chaotic approach has great potential ability in finding the optimal solution of DNDP models.
基金Huang gratefully acknowledges the National Natural Science Foundation of China(Grant No. 79825001)and the Ministry of Educatio
文摘In this paper, a bi-level formulation of the continuous network design problem (NDP) is proposed on the basis of logit stochastic user equilibrium (SUE) assignment with elastic demand. The model determines the link capacity improvements by maximizing net economic benefit while considering changes in demand and traffic distribution in network. The derivatives of equilibrium link flows and objective function with respect to capacity expansion variables, which are analytically derived, can be computed without having to first find path choice information. These derivatives are employed to develop a quasi Newton algorithm with the BFG S (Broyden- Fletcher- Goldfarb-Shanno) formula for solving the nonlinear, nonconvex but differentiable SUE-constrained network design problem. The SUE assignment with elastic demand is solved by using the method of successive averages in conjunction with Bell’s matrix inversion logit assignment method. Simple and complex example networks are presented to illustrate the model and the algorithm.
文摘We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.
文摘Collaborative design is recommended to solve multiphysics problems (MPPS). Firstly, mathematical model of MPPS is constructed and solved by a proposed partitioned method, analysis of which suggests that collaborative design be feasible to solve MPPS. As the key technology of col-laborative design of MPPS, a task collaboration algorithm is then proposed. To develop the applica-tion framework of collaborative design, applied unified process(AUP) is proposed based on rational unified process(RUP). Then AUP is used to develop the collaborative design platform, whose function framework is constructed according to the process of project management. Finally three MPPS are solved on this platform and the results suggest that the proposed model, algorithm and framework be feasible.
文摘This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.
基金This research is partially supported by the National Natural Science Foundation of China (No. 10271055).
文摘A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.