期刊文献+
共找到399篇文章
< 1 2 20 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model 被引量:1
2
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(eemd) Seq-to-Seq long short-term memory
在线阅读 下载PDF
基于LOF-EEMD-LSTM模型的污水水质预测研究
3
作者 游旭 陈会娟 余昭旭 《自动化仪表》 2025年第2期51-56,共6页
为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通... 为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通过LOF算法剔除数据中的异常值。然后,使用EEMD算法筛选出输入数据中强相关的特征子序列。最后,将特征子序列输入LSTM模型中以得到DO预测值。试验结果表明,LOF-EEMD-LSTM模型的准确率可达95.4%、平均绝对误差(MAE)为0.036、均方误差(MSE)为0.0038、均方根误差(RMSE)为0.0614、平均绝对百分比误差(MAPE)为0.046。以上指标相比于反向传播(BP)神经网络、随机森林、LSTM、LOF-LSTM、EEMD-LSTM和变分模态分解-最小二乘支持向量机(VMD-LSSVM)预测模型皆有明显的提升。所提模型的预测精度较高,具有较高的实用价值。 展开更多
关键词 污水处理 水质预测 溶解氧 局部异常因子算法 集合经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
样本熵改进EEMD算法在继电器参数异常值处理中的应用
4
作者 彭威 孙鑫亮 李文华 《电力机车与城轨车辆》 2025年第1期47-54,共8页
针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法... 针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法得到有效的模态分量;最后,分别采用拉依达准则及三次样条插值法对各模态异常数据进行识别及替换,将处理后的所有分量进行重构异常值,得到处理后的数据序列。继电器接触压降参数的实例分析结果表明,该模型具有良好的泛化能力,且能够有效地识别出潜在异常值。 展开更多
关键词 集合经验模态分解(eemd) 样本熵 模态混叠 三次样条插值 继电器参数
在线阅读 下载PDF
Application of EEMD combined with cross-correlation algorithm in Doppler flow signal
5
作者 SHI Fengdong GONG Ruishi +1 位作者 LIANG Tongtong LÜDong 《Journal of Measurement Science and Instrumentation》 2025年第1期58-65,共8页
To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ens... To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter. 展开更多
关键词 ultrasonic Doppler flow meter ensemble empirical mode decomposition(eemd) CROSS-CORRELATION fast Fourier transform(FFT)spectrum analysis energy entropy
在线阅读 下载PDF
基于EEMD分解的阶次跟踪方法研究
6
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
在线阅读 下载PDF
基于PCA和EEMD的柔性直流配电网故障选线算法 被引量:1
7
作者 胡亚辉 韦延方 +2 位作者 王鹏 王晓卫 曾志辉 《电源学报》 CSCD 北大核心 2024年第2期305-315,共11页
柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主... 柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主成分分析PCA(principal component analysis)和相关系数各自的优势。首先,提取暂态电流样本信号,采用EEMD得到以正交基函数表示的数据矩阵;接着,基于PCA进行该矩阵元素特征向量到主成分的转换,将样本信号投影到主元空间实现坐标变换,从而得到对样本数据的聚类和识别结果;最后,基于相关系数进行故障线路判别。本文算法的EEMD揭露了原始历史数据的内在变化规律,PCA能够有效选择故障有效特征。大量实验表明,该新算法准确有效,与现有其他方法相比,在故障信息不明显、不同过渡电阻方面具有优势。 展开更多
关键词 柔性直流配电网 集合经验模态分解 主成分分析 故障选线 相关系数
在线阅读 下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究 被引量:1
8
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(eemd)-小波 模态分量 模型重构 精度 信息提取
在线阅读 下载PDF
基于EEMD-CBAM-BiLSTM的牵引负荷超短期预测
9
作者 钟吴君 李培强 涂春鸣 《电工技术学报》 EI CSCD 北大核心 2024年第21期6850-6864,共15页
针对电气化铁路牵引负荷难以预测的问题,构建了一种由集合经验模态分解(EEMD)、改进型卷积块注意力模块(CBAM)和双向长短期神经网络(BiLSTM)组合成的EEMD-CBAM-BILSTM预测方法,有效地降低了牵引负荷超短期预测误差与计算成本。首先,通过... 针对电气化铁路牵引负荷难以预测的问题,构建了一种由集合经验模态分解(EEMD)、改进型卷积块注意力模块(CBAM)和双向长短期神经网络(BiLSTM)组合成的EEMD-CBAM-BILSTM预测方法,有效地降低了牵引负荷超短期预测误差与计算成本。首先,通过EEMD将牵引负荷数据分解为多个稳定、有规律的时序模态函数,突出负荷数据的时序特征;其次,将分解后的各分量整体通入由卷积神经网络(CNN)和改进型CBAM组成的特征提取模块提取全局时序特征;最后,利用贝叶斯优化(BO)搜寻BiLSTM最优参数,并将全局特征通入优化后的神经网络进行超短期时序预测。仿真算例表明,该文所提预测框架在各预测步长下均能很好地把握牵引负荷变化趋势,显著提升了牵引负荷预测的精度。 展开更多
关键词 牵引负荷预测 集合经验模态分解 双向长短期神经网络 贝叶斯优化 卷积块注 意力模块 卷积神经网络
在线阅读 下载PDF
联合加权小波和EEMD的GNSS坐标时间序列降噪分析 被引量:3
10
作者 魏冠军 张沛 王立阳 《全球定位系统》 CSCD 2024年第2期9-15,共7页
针对GNSS坐标时间序列中有用信号与噪声难以准确分离这一问题,本文提出加权小波Z变换(weighted wavelet Z-transform,WWZ)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)的降噪方法.通过对西北地区70个陆态网络连续... 针对GNSS坐标时间序列中有用信号与噪声难以准确分离这一问题,本文提出加权小波Z变换(weighted wavelet Z-transform,WWZ)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)的降噪方法.通过对西北地区70个陆态网络连续站垂向坐标时间序列的降噪处理,分别采用均方根误差(root mean squared error,RMSE)、信噪比(signal to noise ratio,SNR)、闪烁噪声(flicker noise,FN)振幅及速度不确定度为评价指标,验证了本文方法的降噪效果在一定程度上优于小波降噪和EEMD降噪.结果显示:WWZ-EEMD相比小波降噪和EEMD降噪,降噪后信号序列RMSE分别降低了0.331 mm、0.757 mm,SNR分别提高了1.911 dB、3.635 dB;FN振幅及速度不确定度均有明显改善,验证了本文降噪方法的有效性. 展开更多
关键词 GNSS坐标时间序列 降噪 小波 集合经验模态分解(eemd) 速度不确定度
在线阅读 下载PDF
逆向云灰色关联相似日的EEMD-RL-GWO-LSTM区域风光功率短期预测 被引量:1
11
作者 张宇华 时鑫洋 +2 位作者 颜楠楠 王育飞 薛花 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期144-152,共9页
针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分... 针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分指标;其次,采用集合经验模态分解(EEMD)将选取相似日的功率数据分解为子序列;最后,将子序列和气象数据作为基于折射学习策略(RL)的灰狼算法(GWO)优化的改进长短期记忆网络(LSTM)模型的预测输入进行训练,对待预测日的子序列分别预测,并叠加得到短期区域风光发电功率的预测。以中国西北某风光联合电场数据为例,对该模型进行验证,结果表明,相比于现有预测模型,该文所提方法考虑了天气因素,具有较高的预测精度,能够较好地为区域风光联合电场的功率预测提供参考。 展开更多
关键词 逆向云灰色关联相似日 集合经验模态分解 RL-GWO-LSTM神经网络 短期风光功率预测
在线阅读 下载PDF
基于双EEMD与重构的局部放电时延估计方法
12
作者 李明洁 陈东伟 +2 位作者 王通 刘金超 刘卫东 《电波科学学报》 CSCD 北大核心 2024年第4期760-768,共9页
对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分... 对室内电气设备的局部放电检测与定位是保障设备长期稳定运行的有效手段,而时延估计精度是影响局部放电检测与定位准确度的重要因素。为解决局部放电信号在噪声及多径效应影响下的时延估计精度问题,本文提出了一种基于双集合经验模态分解(ensemble empirical mode decomposition,EEMD)与重构的局部放电信号预处理方法。模拟仿真与实验测试结果表明,本文所提出的方法与广义互相关算法相比有效提高了时延估计准确度,且稳定性与鲁棒性更好。本文所提方法有效提高了局部放电信号的信噪比(signal-to-noise ratio,SNR)以及时延估计算法的精度,可用于低SNR及多径效应明显的室内环境中局部放电信号的时延精确估计。 展开更多
关键词 局部放电 广义加权互相关 二次相关 集合经验模态分解(eemd) 低信噪比(SNR) 多径效应
在线阅读 下载PDF
基于EEMD和小波阈值的局部放电去噪方法
13
作者 杨琪 赵芝希 +3 位作者 林国武 凌志 陈丽丹 曹宏悦 《环境技术》 2024年第7期98-104,共7页
局部放电是开关柜运行状态的重要表征。而现场采集得到的局部放电往往被周期窄带和高斯白噪声所掩盖,为了能准确对局部放电进行分析,保证开关柜安全性和可靠性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD... 局部放电是开关柜运行状态的重要表征。而现场采集得到的局部放电往往被周期窄带和高斯白噪声所掩盖,为了能准确对局部放电进行分析,保证开关柜安全性和可靠性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和小波阈值的去噪方法。首先对含噪局部放电进行EEMD分解,使用相关系数对模态分量(Intrinsic Mode Functions,IMFs)进行阈值判断,以去除虚假分量,随后对保留的IMFs进行小波阈值处理,最后将IMFs重构即可得到有用的局部放电信号。测试结果证明,该方法不仅可以有效地去除噪声信号,还能较好地保留局部放电的特征。 展开更多
关键词 局部放电 集合经验模态分解 小波阈值去噪 相关系数
在线阅读 下载PDF
基于EEMD-SVM的光伏阵列直流电弧故障检测
14
作者 吴杰 《电动工具》 2024年第3期13-17,19,共6页
光伏阵列随着运行时间的增长,阵列内数量众多的连接线缆、连接头容易产生破损或连接失效等问题,引发直流电弧故障,严重影响系统的安全运行,因此需要采用合适的检测方法进行故障诊断,以及时发现电弧故障。直流电弧故障的检测方法大致可... 光伏阵列随着运行时间的增长,阵列内数量众多的连接线缆、连接头容易产生破损或连接失效等问题,引发直流电弧故障,严重影响系统的安全运行,因此需要采用合适的检测方法进行故障诊断,以及时发现电弧故障。直流电弧故障的检测方法大致可以分为基于物理特性和时频特性两类。前者成本高,难度大,不适合大型光伏系统;后者随着近几年人工智能技术的兴起,大多数是提取直流电弧故障的时频域特征值形成数据集,运用神经网络或智能算法对其进行识别、训练、归纳等,达到检测目的,目前实际应用的检测方法侧重于后者。选用基于时频域特性的集合经验模态分解和支持向量机结合方法进行检测,在MATLAB/Simulink仿真平台搭建光伏阵列模型和直流电弧故障仿真模型,模拟光伏阵列不同位置的串、并联电弧故障,对电流信号进行采集、分析与处理。实验结果表明,支持向量机模型能够较好地对光伏阵列直流电弧故障进行识别和检测,有效区分光伏阵列正常工作状态与故障工作状态。 展开更多
关键词 直流 电弧 故障检测 时频域特性 集合经验模态分解 支持向量机 仿真模型
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型
15
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
高速列车万向轴动不平衡检测的EEMD-Hankel-SVD方法 被引量:9
16
作者 丁建明 林建辉 赵洁 《机械工程学报》 EI CAS CSCD 北大核心 2015年第10期143-151,159,共10页
针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD... 针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。 展开更多
关键词 高速列车 万向轴动不平衡 聚合经验模式分解(ensemble empirical model decomposition eemd) HANKEL矩阵 正交化奇异值(Singular value decomposition SVD) 动态检测
在线阅读 下载PDF
基于EEMD样本熵的高速列车转向架故障特征提取 被引量:38
17
作者 秦娜 金炜东 +2 位作者 黄进 李智敏 刘景波 《西南交通大学学报》 EI CSCD 北大核心 2014年第1期27-32,共6页
为了监测高速列车转向架关键部件的工作状态,提出了采用聚合经验模态分解和样本熵信息测度理论相结合的方法提取信号特征.以转向架正常、空气弹簧失气、横向减振器故障和抗蛇行减振器故障4种典型工况下车体及转向架的振动信号为研究对象... 为了监测高速列车转向架关键部件的工作状态,提出了采用聚合经验模态分解和样本熵信息测度理论相结合的方法提取信号特征.以转向架正常、空气弹簧失气、横向减振器故障和抗蛇行减振器故障4种典型工况下车体及转向架的振动信号为研究对象,将信号进行聚合经验模态分解,得到一系列成分简单的固有模态函数,分别计算样本熵值构成高维特征矢量,最后采用支持向量机进行故障状态的分类识别.实验结果表明,列车在200 km/h速度下,故障识别率可以达到88%,证明了该特征提取算法的有效性. 展开更多
关键词 转向架 阈值消噪 聚合经验模态分解 样本熵 支持向量机
在线阅读 下载PDF
基于EEMD的谐波检测方法 被引量:96
18
作者 朱宁辉 白晓民 董伟杰 《中国电机工程学报》 EI CSCD 北大核心 2013年第7期92-98,14,共7页
针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首... 针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首先构造当前时刻采样值始终处于中心位置的向量,然后计算总体谐波分量的在线检测方法。另外,可以通过修改EEMD算法中的频率计算条件实现对特定次数谐波分量的检测。为验证该方法的检测效果,将EEMD算法与瞬时无功功率方法(ip iq)分别应用于仿真和实测数据。检测结果表明,所提方法不但在检测稳态信号时具有很好的精度,而且在检测波动信号时也具有较好的动态特性。 展开更多
关键词 经验模态分解 总体平均经验模态分解 谐波检测 基波提取 在线算法
在线阅读 下载PDF
基于EEMD和Laplace小波的滚动轴承故障诊断 被引量:26
19
作者 李昌林 孔凡让 +3 位作者 黄伟国 陈辉 王超 袁仲洲 《振动与冲击》 EI CSCD 北大核心 2014年第3期63-69,88,共8页
滚动轴承故障导致振动信号中出现多阶模态冲击响应,为了提取单阶模态冲击响应的模态参数,由于Laplace小波相关滤波受多阶模态冲击响应的影响,提出一种基于EEMD和Laplace小波的滚动轴承故障诊断方法。先用EEMD把振动信号中的多阶模态脉... 滚动轴承故障导致振动信号中出现多阶模态冲击响应,为了提取单阶模态冲击响应的模态参数,由于Laplace小波相关滤波受多阶模态冲击响应的影响,提出一种基于EEMD和Laplace小波的滚动轴承故障诊断方法。先用EEMD把振动信号中的多阶模态脉冲响应分解为各单阶模态冲击响应分量,然后用从分解的分量的频谱中选取所需的单阶模态冲击响应分量,再用Laplace小波相关滤波对选取的单阶模态冲击响应分量进行分析,便可以诊断出故障。通过对仿真信号和滚动轴承内圈、外圈、滚动体数据分析很好地验证了提出的方法的有效性。 展开更多
关键词 集合经验模态分解 Laplace小波 相关滤波 滚动轴承
在线阅读 下载PDF
基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法 被引量:57
20
作者 彭畅 柏林 谢小亮 《振动与冲击》 EI CSCD 北大核心 2012年第20期143-146,共4页
基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度... 基于EMD、谱峭度以及包络分析的滚动轴承故障诊断方法,提出了改进的基于EEMD、度量因子和快速峭度图的诊断方法。该方法首先将故障信号进行EEMD分解得到一组IMFs,然后用度量因子筛选出最能表征故障信息的IMF分量重构信号,再用快速峭度图构造最优带通滤波器,最后将滤波后的重构信号进行包络分析并将包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。滚动轴承的内圈故障仿真数据以及工程实测数据均很好地验证了提出的改进方法的有效性,说明其具有良好的应用前景。 展开更多
关键词 eemd 度量因子 快速峭度图 包络分析
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部