In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the l...We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis.展开更多
We introduce a class of structured tensors, called generalized row strictly diagonally dominant tensors, and discuss some relationships between it and several classes of structured tensors, including nonnegative tenso...We introduce a class of structured tensors, called generalized row strictly diagonally dominant tensors, and discuss some relationships between it and several classes of structured tensors, including nonnegative tensors, Btensors, and strictly copositive tensors. In particular, we give estimations on upper and lower bounds of solutions to the tensor complementarity problem (TCP) when the involved tensor is a generalized row strictly diagonally dominant tensor with all positive diagonal entries. The main advantage of the results obtained in this paper is that both bounds we obtained depend only on the tensor and constant vector involved in the TCP;and hence, they are very easy to calculate.展开更多
Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^...Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.展开更多
The concept of vector optimization problems with equilibrium constraints (VOPEC) is introduced. By using the continuity results of the approximate solution set to the equilibrium problem, we obtain the same results of...The concept of vector optimization problems with equilibrium constraints (VOPEC) is introduced. By using the continuity results of the approximate solution set to the equilibrium problem, we obtain the same results of the marginal map and the approximate value in VOPEC (ε) for vector-valued mapping.展开更多
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
基金supported by National Science Foundations of China (Grant Nos. 11001259,11031006)Croucher Foundation of Hong Kong Baptist University
文摘We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis.
文摘We introduce a class of structured tensors, called generalized row strictly diagonally dominant tensors, and discuss some relationships between it and several classes of structured tensors, including nonnegative tensors, Btensors, and strictly copositive tensors. In particular, we give estimations on upper and lower bounds of solutions to the tensor complementarity problem (TCP) when the involved tensor is a generalized row strictly diagonally dominant tensor with all positive diagonal entries. The main advantage of the results obtained in this paper is that both bounds we obtained depend only on the tensor and constant vector involved in the TCP;and hence, they are very easy to calculate.
基金the Applied Research Project of Sichuan Province(05JY029-009-1)
文摘Let X, Y be two finite-dimensional topological vector spaces, Z a Hausdorff topological vector space, K C X and D C Z be two nonempty sets, C be a pointed, closed, and convex cone in Y with int C ≠θ Let S : K → 2^K and T : K → 2^D be two multivalued mappings, and φ : K × D × K → Y be a trifunction. In this paper, we consider the generalized vector quasi-equilibrium problem, which is formulated by finding X∈ K and y∈ T(x) such that x∈ E S(x) and φ(x,y, u) (∈/) -int C for all u ∈ S(x). We establish an existence result in which T is not supposed to have any continuity property. Our results extend and improve the corresponding results of Cubiotti, Yao and Guo.
文摘The concept of vector optimization problems with equilibrium constraints (VOPEC) is introduced. By using the continuity results of the approximate solution set to the equilibrium problem, we obtain the same results of the marginal map and the approximate value in VOPEC (ε) for vector-valued mapping.