The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan...The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be a...In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.展开更多
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer...针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.展开更多
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the c...Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the classification of heart beats according to different arrhythmias. Data were obtained from 40 records of the MIT-BIH arrhythmia database (only one lead). Cardiac arrhythmias which are found are Tachycardia, Bradycardia, Supraventricular Tachycardia, Incomplete Bundle Branch Block, Bundle Branch Block, Ventricular Tachycardia. A learning dataset for the neural network was obtained from a twenty records set which were manually classified using MIT-BIH Arrhythmia Database Directory and docu- mentation, taking advantage of the professional experience of a cardiologist. Fast Fourier transforms are used to identify the peaks in the ECG signal and then Neural Networks are applied to identify the diseases. Levenberg Marquardt Back-Propagation algorithm is used to train the network. The results obtained have better efficiency then the previously proposed methods.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FP...A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.展开更多
Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help sel...Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help select candidate sites for ablation. Frequency analysis is used to find and track DF. It is important to minimize the catheter insertion time in the atria as it contributes to the risk for the patients during this procedure, so DF estimation needs to be obtained as quickly as possible. A comparison of computation tim- es taken for spectrum estimation analysis is presented in this paper. Fast Fourier Transform (FFT), Blackman-Tukey (BT), Autoregressive (AR) and Multiple Signal Classification (MUSIC) methods are used to obtain the frequency spectrum of the signals. The time to produce DF was measured for each method. The method which takes the shortest time for analysis is selected for real time application purpose.展开更多
A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and abili...A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.展开更多
A Fast Fourier transform approach has been presented by Carr & Madan (2009) on a single underlying asset. In this current research paper, we present fast Fourier transform algorithm for the valuation of Multi-asse...A Fast Fourier transform approach has been presented by Carr & Madan (2009) on a single underlying asset. In this current research paper, we present fast Fourier transform algorithm for the valuation of Multi-asset Options under Economic Recession Induced Uncertainties. The issue of multi-dimension in both finite and infinite case of Options is part of the focus of this research. The notion of economic recession was incorporated. An intuition behind the introduction of recession induced volatility uncertainty is revealed by huge volatility variation during the period of economic recession compared to the period of recession-free. Nigeria economic recession outbreak in 2016 and its effects on the uncertainty of the payoffs of Nigeria Stocks Exchange (NSE) among other investments was among the motivating factors for proposing economic recession induced volatility in options pricing. The application of the proposed Fast Fourier Transform algorithm in handling multi-assets options was shown. A new result on options pricing was achieved and capable of yielding efficient option prices during and out of recession. Numerical results were presented on assets in 3-dimensions as an illustration taking Black Scholes prices as a bench mark for method effectiveness comparison. The key findings of this research paper among other crucial contributions could be seen in computational procedure of options valuation in multi-dimensions and uncertainties in options payoffs under the exposure of economic recession.展开更多
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the refle...The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.展开更多
To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas we...To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.展开更多
双馈风电场在低电压穿越策略下所输出的短路电流存在偏频特性,导致送出变压器传统差动保护动作延时过长。针对上述问题,首先,研究了低电压穿越策略下的双馈风机短路电流特性及其偏频特性对风电场送出变压器傅里叶工频算法提取二次谐波...双馈风电场在低电压穿越策略下所输出的短路电流存在偏频特性,导致送出变压器传统差动保护动作延时过长。针对上述问题,首先,研究了低电压穿越策略下的双馈风机短路电流特性及其偏频特性对风电场送出变压器傅里叶工频算法提取二次谐波分量的影响;其次,分析了传统差动保护在双馈风电场送出变压器中的适应性;然后,提出了基于全相位快速傅里叶变换(all-phase fast Fourier transform,apFFT)的双馈风电场送出变压器差动保护新方法;最后,通过PSCAD/EMTDC仿真对所提方法进行了验证,结果表明,新方法不仅能够正确识别励磁涌流,而且提高了内部故障时差动保护的速动性。展开更多
Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling...Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling bearings under complex working conditions and noise,this study proposes a multiscale information fusion method for fault diagnosis of rolling bearings based on fast Fourier transform(FFT)and variational mode decomposition(VMD),as well as the Senet(SE)-TCNnet(TCN)model.FFT is used to transform the original one-dimensional time domain vibration signal into a frequency domain signal,while VMD is used to decompose the original signal into several inherent mode functions(IMFs)of different scales.The center frequency method also determines the number of mode decompositions.Then,the data obtained by the two methods are fused into data containing the bearing fault information of different scales.Finally,the fused data are sent to the SE-TCN model for training.Experimental tests are conducted to verify the performance of this method.The findings reveal that an average accuracy of 98.39%can be achieved when noise is added and can even reach 100%when the signal-to-noise ratio is 6 dB.When the load changes,the accuracy of the model can reach 97.45%.The proposed method has the characteristics of high accuracy and strong generalization ability in bearing fault diagnosis.Furthermore,it can effectively overcome the effects of noise and variable working conditions in actual industrial environments,thus providing some ideas for future practical applications of bearing fault diagnosis.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11802332)the China Scholarship Council(Grant No.202206435003)the Fundamental Research Funds for the Central Universities(Grant No.2024ZKPYLJ03).
文摘The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Project(60904090) supported by the National Natural Science Foundation of China
文摘In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.
文摘针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the classification of heart beats according to different arrhythmias. Data were obtained from 40 records of the MIT-BIH arrhythmia database (only one lead). Cardiac arrhythmias which are found are Tachycardia, Bradycardia, Supraventricular Tachycardia, Incomplete Bundle Branch Block, Bundle Branch Block, Ventricular Tachycardia. A learning dataset for the neural network was obtained from a twenty records set which were manually classified using MIT-BIH Arrhythmia Database Directory and docu- mentation, taking advantage of the professional experience of a cardiologist. Fast Fourier transforms are used to identify the peaks in the ECG signal and then Neural Networks are applied to identify the diseases. Levenberg Marquardt Back-Propagation algorithm is used to train the network. The results obtained have better efficiency then the previously proposed methods.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC07020200)the National Key R&D Program of China(Grant Nos.2018YFA0306600 and 2016YFB0501603)+3 种基金the National Natural Science Foundation of China(Grant No.11927811)the Chinese Academy of Sciences(Grants Nos.GJJSTD20170001 and QYZDY-SSW-SLH004)Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY050000)the Fundamental Research Funds for the Central Universities,China.
文摘A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.
文摘Dominant frequency (DF) of electrophysiological data is an effective approach to estimate the activation rate during Atrial Fibrillation (AF) and it is important to understand the pathophysiology of AF and to help select candidate sites for ablation. Frequency analysis is used to find and track DF. It is important to minimize the catheter insertion time in the atria as it contributes to the risk for the patients during this procedure, so DF estimation needs to be obtained as quickly as possible. A comparison of computation tim- es taken for spectrum estimation analysis is presented in this paper. Fast Fourier Transform (FFT), Blackman-Tukey (BT), Autoregressive (AR) and Multiple Signal Classification (MUSIC) methods are used to obtain the frequency spectrum of the signals. The time to produce DF was measured for each method. The method which takes the shortest time for analysis is selected for real time application purpose.
文摘A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.
文摘A Fast Fourier transform approach has been presented by Carr & Madan (2009) on a single underlying asset. In this current research paper, we present fast Fourier transform algorithm for the valuation of Multi-asset Options under Economic Recession Induced Uncertainties. The issue of multi-dimension in both finite and infinite case of Options is part of the focus of this research. The notion of economic recession was incorporated. An intuition behind the introduction of recession induced volatility uncertainty is revealed by huge volatility variation during the period of economic recession compared to the period of recession-free. Nigeria economic recession outbreak in 2016 and its effects on the uncertainty of the payoffs of Nigeria Stocks Exchange (NSE) among other investments was among the motivating factors for proposing economic recession induced volatility in options pricing. The application of the proposed Fast Fourier Transform algorithm in handling multi-assets options was shown. A new result on options pricing was achieved and capable of yielding efficient option prices during and out of recession. Numerical results were presented on assets in 3-dimensions as an illustration taking Black Scholes prices as a bench mark for method effectiveness comparison. The key findings of this research paper among other crucial contributions could be seen in computational procedure of options valuation in multi-dimensions and uncertainties in options payoffs under the exposure of economic recession.
基金Supported by the National Natural Science Foundation of China under Grant No 11604115the Educational Commission of Jiangsu Province of China under Grant No 17KJA460004the Huaian Science and Technology Funds under Grant No HAC201701
文摘The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.
基金Foundation item The National Natural Science Foundationof China (No10571065)
文摘To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.
文摘双馈风电场在低电压穿越策略下所输出的短路电流存在偏频特性,导致送出变压器传统差动保护动作延时过长。针对上述问题,首先,研究了低电压穿越策略下的双馈风机短路电流特性及其偏频特性对风电场送出变压器傅里叶工频算法提取二次谐波分量的影响;其次,分析了传统差动保护在双馈风电场送出变压器中的适应性;然后,提出了基于全相位快速傅里叶变换(all-phase fast Fourier transform,apFFT)的双馈风电场送出变压器差动保护新方法;最后,通过PSCAD/EMTDC仿真对所提方法进行了验证,结果表明,新方法不仅能够正确识别励磁涌流,而且提高了内部故障时差动保护的速动性。
基金supported by Handan Science and Technology Research and Development Plan Project under Grant no.23422901031Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering)under Grant no.202206.
文摘Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling bearings under complex working conditions and noise,this study proposes a multiscale information fusion method for fault diagnosis of rolling bearings based on fast Fourier transform(FFT)and variational mode decomposition(VMD),as well as the Senet(SE)-TCNnet(TCN)model.FFT is used to transform the original one-dimensional time domain vibration signal into a frequency domain signal,while VMD is used to decompose the original signal into several inherent mode functions(IMFs)of different scales.The center frequency method also determines the number of mode decompositions.Then,the data obtained by the two methods are fused into data containing the bearing fault information of different scales.Finally,the fused data are sent to the SE-TCN model for training.Experimental tests are conducted to verify the performance of this method.The findings reveal that an average accuracy of 98.39%can be achieved when noise is added and can even reach 100%when the signal-to-noise ratio is 6 dB.When the load changes,the accuracy of the model can reach 97.45%.The proposed method has the characteristics of high accuracy and strong generalization ability in bearing fault diagnosis.Furthermore,it can effectively overcome the effects of noise and variable working conditions in actual industrial environments,thus providing some ideas for future practical applications of bearing fault diagnosis.