The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ...The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.展开更多
Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellan...Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.展开更多
The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning cal...The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.展开更多
Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classificat...Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.展开更多
Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been develo...Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been developed into a highly versatile technique for manufacturing solid rocket charges.Propellants manufactured by this process provide a wide range of energies and burning rates.Successful preparation of cast double-base propellant grains has been performed using compatible casting liquid with the casting powder.BuNENA was used as an energetic plasticizer for manufacturing of casting powder.Burning rate measurements have been performed using closed bomb SV-2to investigate the burning behavior along a wide range of operating pressure.Plateau burning had been detected in pressure range(50-70)×105 Pa for the composition included BuNENA.DTA and TGA thermal analysis were conducted to evaluate the thermal behavior of the prepared cast double-base propellants.Results from DTA were used to calculate the apparent activation energy.展开更多
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,...The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60%CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm^(3)and 1.53 g/cm^(3)were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56%porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.展开更多
In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,thi...In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.展开更多
Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assess...Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.展开更多
Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thr...Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thrust and action time. This study is devoted to evaluate the impact of RDX on chemical stability and shelf life of DB propellant. Extruded modified DB propellant based on RDX was manufactured by solventless extrusion process. Shelf life assessment was performed using an artificial aging at70 ℃ up to 120 days and employing Van't Hoffs formula. Quantification of evolved NOx gases and stabilizer depletion with aging time was conducted using Bergmann-Junk test and HPLC respectively.Modified DB formulation based on RDX 20 wt % demonstrated enhanced chemical stability and extended service life up to 46 years compared with reference formulation. This finding was ascribed to the high chemical and thermal stability of RDX as well as its compatibility with DB constituents; no side chemical reactions could take place during storing. This manuscript shaded the light on RDX as effective energetic constituent that offered DB propellants with enhanced performance, good chemical stability, and extended service life.展开更多
The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in t...The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the concentration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the progressive combustion is the strongest and the interior ballistic performance is the best.展开更多
The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are ...The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.展开更多
A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical ...Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.展开更多
Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this ...Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.展开更多
Distally based perforator sural flaps from the posterolateral or posteromedial lower leg aspect are initially a neurofasciocutaneous flap that can be transferred reversely to the foot and ankle region with no need to ...Distally based perforator sural flaps from the posterolateral or posteromedial lower leg aspect are initially a neurofasciocutaneous flap that can be transferred reversely to the foot and ankle region with no need to harvest and sacrifice the deep major artery. These flaps are supplied by a perforating artery issued from the deep peroneal artery or the posterior tibial artery, and the chainlinked adipofascial neurovascular axis around the sural/saphenous nerve. It is a versatile and reliable technique for soft-tissue reconstruction of the heel and ankle region with 180-degrees rotation. In this paper, we present its developing history, vascular basis, surgical techniques including flap design and elevation, flap variations in pedicle and component, surgical indications, and illustrative case reports with different perforating vessels as pivot points for foot and ankle coverage.展开更多
There is a tremendous growth of digital data due to the stunning progress of digital devices which facilitates capturing them. Digital data include image, text, and video. Video represents a rich source of information...There is a tremendous growth of digital data due to the stunning progress of digital devices which facilitates capturing them. Digital data include image, text, and video. Video represents a rich source of information. Thus, there is an urgent need to retrieve, organize, and automate videos. Video retrieval is a vital process in multimedia applications such as video search engines, digital museums, and video-on-demand broadcasting. In this paper, the different approaches of video retrieval are outlined and briefly categorized. Moreover, the different methods that bridge the semantic gap in video retrieval are discussed in more details.展开更多
The iron-based superconductivity (IBSC) is a great challenge in correlated system. Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs, the pairing strength, and the order ...The iron-based superconductivity (IBSC) is a great challenge in correlated system. Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs, the pairing strength, and the order parameter symmetry. Here, we briefly review the recent progress in IBSCs and focus on the results from ARPES. The ARPES study shows the electronic structure of "122", "111", "11", and "122"" families of IBSCs. It has been agreed that the IBSCs are unconventional superconductors in strong coupling region. The order parameter symmetry basically follows s form with considerable out-of-plane contribution.展开更多
文摘The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.
基金funded by the Defence Science and Technology Laboratory(Dstl)part of the UK MoD,under the Hazard Modelling and Simulation task of the UK Energetics(UK-E)programme now consumed by the Weapons Science and Technology Centre(WSTC)
文摘Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.
文摘The kinetics of the thermal decomposition for a naturally ageing ammonium perchlorate(AP) and hydroxyl-terminated-polybutadiene(HTPB) base bleed composite propellant were investigated using a differential scanning calorimetry(DSC). The naturally ageing AP/HTPB base bleed propellant samples have been stored in a sealed plastic bag at room temperature(5-25 ℃) for more than 20 years. The experimental DSC results were obtained by placing samples(each about 1.5 mg) in a sealed pan under non-isothermal condition under different heating rates, 5.0, 10.0, 15.0, 20.0 and 30.0 ℃·min^(-1). The activation energy and pre-exponential factor were estimated based on the relationship between the exothermic peak temperature and the heating rate by Ozawa and Kissinger methods, respectively. The decomposition kinetic parameters is lower the values under laboratorial aging condition.
基金financially supported by grant from National Natural Science Foundation of China(No.31300533)
文摘Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.
文摘Preparation of cast double-propellant grains depends on the ability of nitrocellulose powder to swell and coalesce into a coherent mass when treated with a suitable solvent.The cast double-base process has been developed into a highly versatile technique for manufacturing solid rocket charges.Propellants manufactured by this process provide a wide range of energies and burning rates.Successful preparation of cast double-base propellant grains has been performed using compatible casting liquid with the casting powder.BuNENA was used as an energetic plasticizer for manufacturing of casting powder.Burning rate measurements have been performed using closed bomb SV-2to investigate the burning behavior along a wide range of operating pressure.Plateau burning had been detected in pressure range(50-70)×105 Pa for the composition included BuNENA.DTA and TGA thermal analysis were conducted to evaluate the thermal behavior of the prepared cast double-base propellants.Results from DTA were used to calculate the apparent activation energy.
文摘The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60%CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm^(3)and 1.53 g/cm^(3)were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56%porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.
基金the support from the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(Grant No.STACPL120221B03)the National Natural Science Foundation of China(Grant No.22175059).
文摘In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.
文摘Modified DB propellants, based on energetic nitramine(RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van’t Hoff’s formula and artificial aging at 70℃ up to120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry(DSC) and thermal activity monitoring(TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents. This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.
文摘Double-base(DB) propellant is vulnerable to auto-catalytic decomposition reactions during storing with the evolution of nitrogen oxides. Modified DB propellant based on energetic nitramines(RDX) can offer enhanced thrust and action time. This study is devoted to evaluate the impact of RDX on chemical stability and shelf life of DB propellant. Extruded modified DB propellant based on RDX was manufactured by solventless extrusion process. Shelf life assessment was performed using an artificial aging at70 ℃ up to 120 days and employing Van't Hoffs formula. Quantification of evolved NOx gases and stabilizer depletion with aging time was conducted using Bergmann-Junk test and HPLC respectively.Modified DB formulation based on RDX 20 wt % demonstrated enhanced chemical stability and extended service life up to 46 years compared with reference formulation. This finding was ascribed to the high chemical and thermal stability of RDX as well as its compatibility with DB constituents; no side chemical reactions could take place during storing. This manuscript shaded the light on RDX as effective energetic constituent that offered DB propellants with enhanced performance, good chemical stability, and extended service life.
文摘The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the concentration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the progressive combustion is the strongest and the interior ballistic performance is the best.
基金Supported by the National Natural Science Foundation of China under Grant No 11274121
文摘The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
文摘Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.
基金Supported by the Science and Technology on Combustion and Explosion Laboratory Foundation(9140C350319140C35161)
文摘Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.
基金Supported by Natural Science Fundation of China(NSFC),No.81271993Shanghai Municipal Health and Family Planning Commission,No.201440352
文摘Distally based perforator sural flaps from the posterolateral or posteromedial lower leg aspect are initially a neurofasciocutaneous flap that can be transferred reversely to the foot and ankle region with no need to harvest and sacrifice the deep major artery. These flaps are supplied by a perforating artery issued from the deep peroneal artery or the posterior tibial artery, and the chainlinked adipofascial neurovascular axis around the sural/saphenous nerve. It is a versatile and reliable technique for soft-tissue reconstruction of the heel and ankle region with 180-degrees rotation. In this paper, we present its developing history, vascular basis, surgical techniques including flap design and elevation, flap variations in pedicle and component, surgical indications, and illustrative case reports with different perforating vessels as pivot points for foot and ankle coverage.
文摘There is a tremendous growth of digital data due to the stunning progress of digital devices which facilitates capturing them. Digital data include image, text, and video. Video represents a rich source of information. Thus, there is an urgent need to retrieve, organize, and automate videos. Video retrieval is a vital process in multimedia applications such as video search engines, digital museums, and video-on-demand broadcasting. In this paper, the different approaches of video retrieval are outlined and briefly categorized. Moreover, the different methods that bridge the semantic gap in video retrieval are discussed in more details.
基金supported by the National Natural Science Foundation of China(Grant No.11274381)the National Basic Research Program of China(GrantNo.2010CB923000)
文摘The iron-based superconductivity (IBSC) is a great challenge in correlated system. Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs, the pairing strength, and the order parameter symmetry. Here, we briefly review the recent progress in IBSCs and focus on the results from ARPES. The ARPES study shows the electronic structure of "122", "111", "11", and "122"" families of IBSCs. It has been agreed that the IBSCs are unconventional superconductors in strong coupling region. The order parameter symmetry basically follows s form with considerable out-of-plane contribution.