A new approach to gain-scheduling of H∞controllers is proposed for a cruise missile with variableswept wings( VSW) in bank-to-turn( BTT) mode. A nonlinear dynamic model is established and anticipant performance crite...A new approach to gain-scheduling of H∞controllers is proposed for a cruise missile with variableswept wings( VSW) in bank-to-turn( BTT) mode. A nonlinear dynamic model is established and anticipant performance criterions are given at first. For the selected operating points,feedback robust controllers of threechannels are designed independently to restrain cross-channel couple disturbances and aerodynamic perturbations. Then,the sweepback and Ma number are selected to schedule controller gains iteratively to ensure all closed-loop poles locating inside the desired region. The proposed method here attempts to extend the performance of initial design obtained for a single arbitrary point to the whole linearized domain while maintaining the expected stability over the entire range of sweepback and full flight envelope. Some time-domain analysis procedures based on the proposed method are carried out and assessed,while the performance of tracking and robustness to aerodynamic perturbations in different situations are contrasted by some nonlinear simulations. Finally,the numerical simulations demonstrate that the proposed autopilot design method has better tracking performance and is robust,effective and feasible.展开更多
This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gai...This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to aut...Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum wit...The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.展开更多
This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules ...This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules with linear consequent, and the generalized defuzzifler containing the popular centrold defuzzifler as a special case. We first establish the relationship between the TS fuzzy controller and the linear PID controller. The TS ftizzy controller is accurately a nonlinear PID controller with gains continuously changing with Its process output. Then we point out that the TS fuzzy controller is closely related to the traditional gain scheduler. The gains of the TS ftizzy controller are determined by three two - Input - one - output fuzzy systems with singleton output fuzzy sets. Finally, as a demonstration, a simple TS fuzzy controller employing two linear input fuzzy sets, Zadeh fuzzy logic AND, and the popular centrold defuzzifler is designed to be the gain scheduler for the PID controller.展开更多
The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND opera...The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is inv...The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.展开更多
This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the reg...This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the region below the rated wind speed. Gain scheduled control approach is applied in order to achieve high performance over a wide range of wind speed. A double loop configuration is adopted. In the inner loop, the rotor speed is used as the scheduling parameter, while a function of wind and rotor speed is used as the scheduling parameter in the outer loop. It is verified in simulations that a high tracking performance has been achieved.展开更多
基金Sponsored by Armament Department Pre-Research Foundation of China(Grant No.9140A31010114JB25465)Natural Science Foundation of Jiangsu Province(Grant No.BK20140795)Chinese Aerospace CAST Innovation Foundation(Grant No.CAST2014-27)
文摘A new approach to gain-scheduling of H∞controllers is proposed for a cruise missile with variableswept wings( VSW) in bank-to-turn( BTT) mode. A nonlinear dynamic model is established and anticipant performance criterions are given at first. For the selected operating points,feedback robust controllers of threechannels are designed independently to restrain cross-channel couple disturbances and aerodynamic perturbations. Then,the sweepback and Ma number are selected to schedule controller gains iteratively to ensure all closed-loop poles locating inside the desired region. The proposed method here attempts to extend the performance of initial design obtained for a single arbitrary point to the whole linearized domain while maintaining the expected stability over the entire range of sweepback and full flight envelope. Some time-domain analysis procedures based on the proposed method are carried out and assessed,while the performance of tracking and robustness to aerodynamic perturbations in different situations are contrasted by some nonlinear simulations. Finally,the numerical simulations demonstrate that the proposed autopilot design method has better tracking performance and is robust,effective and feasible.
基金supported by the National Defense Pre-research Foundation (9140A21041110KG0148)
文摘This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
基金Project(K5117827)supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(08KJB510021)supported by the Natural Science Research Council of Jiangsu Province,China+1 种基金Project(Q3117918)supported by Scientific Research Foundation for Young Teachers of Soochow University,ChinaProject(60910001)supported by National Natural Science Foundation of China
文摘Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
文摘The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.
文摘This paper aims at Takagi - Sugeno (TS) fuzzy controllers as gain scheduling (GS) schemes of PID controllers. A TS fuzzy controller employs arbitrary input fuzzy sets, product or Zadeh fuzzy logic AND, TS fuzzy rules with linear consequent, and the generalized defuzzifler containing the popular centrold defuzzifler as a special case. We first establish the relationship between the TS fuzzy controller and the linear PID controller. The TS ftizzy controller is accurately a nonlinear PID controller with gains continuously changing with Its process output. Then we point out that the TS fuzzy controller is closely related to the traditional gain scheduler. The gains of the TS ftizzy controller are determined by three two - Input - one - output fuzzy systems with singleton output fuzzy sets. Finally, as a demonstration, a simple TS fuzzy controller employing two linear input fuzzy sets, Zadeh fuzzy logic AND, and the popular centrold defuzzifler is designed to be the gain scheduler for the PID controller.
基金Supported by the National Science Foundation(Grant No.69874038)
文摘The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2662018QD029)the National Natural Science Foundation of China(Nos.91016022,61503354)in part by the Priority Academic Program of Jiangsu Higher Education Institutions
文摘The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.
文摘This paper proposes a gain scheduled control method for a doubly fed induction generator driven by a wind turbine. The purpose is to design a variable speed control system so as to extract the maximum power in the region below the rated wind speed. Gain scheduled control approach is applied in order to achieve high performance over a wide range of wind speed. A double loop configuration is adopted. In the inner loop, the rotor speed is used as the scheduling parameter, while a function of wind and rotor speed is used as the scheduling parameter in the outer loop. It is verified in simulations that a high tracking performance has been achieved.