In the article“Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene”(Oncology Research.2024,Vol.32,No.7,pp.1185–1195.doi:10....In the article“Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene”(Oncology Research.2024,Vol.32,No.7,pp.1185–1195.doi:10.32604/or.2023.030771,https://www.techscience.com/or/v32n7/57163),an inadvertent error occurred during the compilation of Fig.3H.This needed corrections to ensure the accuracy and integrity of the data presented.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platform...With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platforms.However,compared with mechanically driven platforms,the stiffness and damping of the fluid,as well as the coupling effect between the fluid and the structure need to be considered for electro-hydraulic-driven parallel stabilization platforms,making the modal and dynamic response characteristics of the mechanism more complex.With the aim of solving the aforementioned issues,we research the electro-hydraulic driven 3-UPS/S parallel stabilization platform considering the hinge stiffness.Moreover,the characteristic vibration equation of the mechanism is established using the virtual work principle.Subsequently,the variation characteristics of the natural frequency and the vibration response according to the position of the mechanism are analyzed based on the dynamic equation.Finally,the correctness of the model is verified by a modal test and Runge-Kutta methods.This study provides a theoretical basis for the dynamic design of electrohydraulic-driven parallel mechanisms.展开更多
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio...A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).展开更多
The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elast...The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.展开更多
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t...A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).展开更多
We establish the conditions for the compute of the stability restriction and local accuracy on the time step and we prove the consistency and local truncation error by using θ-scheme and 3-level scheme for Heat Equat...We establish the conditions for the compute of the stability restriction and local accuracy on the time step and we prove the consistency and local truncation error by using θ-scheme and 3-level scheme for Heat Equation with smooth initial conditions and for some parameter θ∈[0,1].展开更多
The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena,for instance,tsunamis in the oceans.This paper focuses on executing the generalized exponential rational functi...The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena,for instance,tsunamis in the oceans.This paper focuses on executing the generalized exponential rational function approach and some numerical methods to obtain a distinct range of traveling wave structures and numerical results of the two-dimensional Riemann problems.The stability of obtained traveling wave solutions is analyzed by satisfying the constraint conditions of the Hamiltonian system.Numerical simulations are investigated via the finite difference method to verify the accuracy of the obtained results.To extract the approximation solutions to the underlying problem,some ODE solvers in FORTRAN software are applied,and outcomes are shown graphically.The stability and accuracy of the numerical schemes using Fourier’s stabilitymethod and error analysis,respectively,to increase the reassurance are investigated.A comparison between the analytical and numerical results is obtained and graphically provided.The proposed methods are effective and practical to be applied for solving more partial differential equations(PDEs).展开更多
This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model ...This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.展开更多
An impulsive control scheme of Liu's system is presented in this paper. Some less conservative conditions with impulses at fixed times are provided, which can guarantee the global asymptotical stability and global ex...An impulsive control scheme of Liu's system is presented in this paper. Some less conservative conditions with impulses at fixed times are provided, which can guarantee the global asymptotical stability and global exponential stability for the impulsive control of Liu's systems. We also present the estimate of the stable region for the equidistance impulsive interval. Furthermore, an illustrative example is given to show the effectiveness of the proposed results.展开更多
In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements ha...In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.展开更多
Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive an...Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.展开更多
With the rapid economic development and the continuous improvement of peoples living standards, ensuring the safety of water supply has become an urgent task. The national requirements for water quality indicators are...With the rapid economic development and the continuous improvement of peoples living standards, ensuring the safety of water supply has become an urgent task. The national requirements for water quality indicators are becoming more and more stringent, and water quality testing is a process of evaluating water quality. By analyzing the results of water quality testing, water quality can be judged and dealt with accordingly. Starting from the direction of improving the accuracy and stability of water quality testing, this paper focuses on analyzing some of the reasons, and puts forward some suggestions on improving the accuracy and stability of water quality testing.展开更多
Under the current economic development mechanism with domestic major circulation as the main body and domestic and international double circulation promoting each other, industry, agriculture, daily life of residents ...Under the current economic development mechanism with domestic major circulation as the main body and domestic and international double circulation promoting each other, industry, agriculture, daily life of residents and other aspects have higher requirements on water quantity and quality. The continuous construction and development of industry has produced a large number of highly polluting substances such as waste gas and waste residue. The random discharge of polluting substances has had a very bad negative impact on a series of factors, such as water resources, soil conditions, air quality, etc. It will not only affect people's health, but also require government units to invest a large amount of money in water pollution treatment every year. Therefore, based on the current serious water pollution situation, it is urgent to take effective technical measures to further improve the accuracy and stability of water quality testing.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to...The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.展开更多
文摘In the article“Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene”(Oncology Research.2024,Vol.32,No.7,pp.1185–1195.doi:10.32604/or.2023.030771,https://www.techscience.com/or/v32n7/57163),an inadvertent error occurred during the compilation of Fig.3H.This needed corrections to ensure the accuracy and integrity of the data presented.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
基金National Key Research and Development Program of China(Grant No.2019YFB2005303)General Fund of the National Natural Science Foundation of China(Grant No.52175066)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2020203090)Hebei Provincial Key Science and Technology Projects in the Colleges and Universities of China(Grant No.ZD2022052)。
文摘With the development of fluid-power transmission and control technology,electro-hydraulic-driven technology can significantly improve the load-carrying capacity,stiffness,and control accuracy of stabilization platforms.However,compared with mechanically driven platforms,the stiffness and damping of the fluid,as well as the coupling effect between the fluid and the structure need to be considered for electro-hydraulic-driven parallel stabilization platforms,making the modal and dynamic response characteristics of the mechanism more complex.With the aim of solving the aforementioned issues,we research the electro-hydraulic driven 3-UPS/S parallel stabilization platform considering the hinge stiffness.Moreover,the characteristic vibration equation of the mechanism is established using the virtual work principle.Subsequently,the variation characteristics of the natural frequency and the vibration response according to the position of the mechanism are analyzed based on the dynamic equation.Finally,the correctness of the model is verified by a modal test and Runge-Kutta methods.This study provides a theoretical basis for the dynamic design of electrohydraulic-driven parallel mechanisms.
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
基金NSF of the Education Department of Henan Province(20031100010)
文摘A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).
文摘The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.
文摘A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).
文摘We establish the conditions for the compute of the stability restriction and local accuracy on the time step and we prove the consistency and local truncation error by using θ-scheme and 3-level scheme for Heat Equation with smooth initial conditions and for some parameter θ∈[0,1].
文摘The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena,for instance,tsunamis in the oceans.This paper focuses on executing the generalized exponential rational function approach and some numerical methods to obtain a distinct range of traveling wave structures and numerical results of the two-dimensional Riemann problems.The stability of obtained traveling wave solutions is analyzed by satisfying the constraint conditions of the Hamiltonian system.Numerical simulations are investigated via the finite difference method to verify the accuracy of the obtained results.To extract the approximation solutions to the underlying problem,some ODE solvers in FORTRAN software are applied,and outcomes are shown graphically.The stability and accuracy of the numerical schemes using Fourier’s stabilitymethod and error analysis,respectively,to increase the reassurance are investigated.A comparison between the analytical and numerical results is obtained and graphically provided.The proposed methods are effective and practical to be applied for solving more partial differential equations(PDEs).
基金Supported by National Natural Science Foundation of China (50977008, 60904017, 60774048, 60728307), the Funds for Creative Research Groups of China (60521003), the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0421), and the 111 Project (B08015), National High Technology Research and Development Program of China (863 Program) (2006AA04Z183)
文摘This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.
基金Supported by Foundation of Zhejiang Educational Committee under Grant No. Y200805720
文摘An impulsive control scheme of Liu's system is presented in this paper. Some less conservative conditions with impulses at fixed times are provided, which can guarantee the global asymptotical stability and global exponential stability for the impulsive control of Liu's systems. We also present the estimate of the stable region for the equidistance impulsive interval. Furthermore, an illustrative example is given to show the effectiveness of the proposed results.
文摘In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB215202)the National Natural Science Foundation of China(Grant Nos.61104080 and 61134001)the Fundamental Research Funds for the Central Universities(Grant No.CDJZR13 175501)
文摘Considering mechanical limitation or device restriction in practical application, this paper investigates impulsive stabilization of nonlinear systems with impulsive gain error. Compared with the existing impulsive analytical approaches,the proposed impulsive control method is more practically applicable, which includes control gain error with an acceptable boundary. A sufficient criterion for global exponential stability of an impulsive control system is derived, which relaxes the condition for precise impulsive gain efficiently. The effectiveness of the proposed method is confirmed by theoretical analysis and numerical simulation based on Chua's circuit.
文摘With the rapid economic development and the continuous improvement of peoples living standards, ensuring the safety of water supply has become an urgent task. The national requirements for water quality indicators are becoming more and more stringent, and water quality testing is a process of evaluating water quality. By analyzing the results of water quality testing, water quality can be judged and dealt with accordingly. Starting from the direction of improving the accuracy and stability of water quality testing, this paper focuses on analyzing some of the reasons, and puts forward some suggestions on improving the accuracy and stability of water quality testing.
文摘Under the current economic development mechanism with domestic major circulation as the main body and domestic and international double circulation promoting each other, industry, agriculture, daily life of residents and other aspects have higher requirements on water quantity and quality. The continuous construction and development of industry has produced a large number of highly polluting substances such as waste gas and waste residue. The random discharge of polluting substances has had a very bad negative impact on a series of factors, such as water resources, soil conditions, air quality, etc. It will not only affect people's health, but also require government units to invest a large amount of money in water pollution treatment every year. Therefore, based on the current serious water pollution situation, it is urgent to take effective technical measures to further improve the accuracy and stability of water quality testing.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘The problems of stability and state feedback control for a class of discrete-time T-S fuzzy descriptor systems are investigated in this paper. Based on fuzzy Lyapunov function,a set of slack variables is introduced to remove the basic semi-definite matrix inequality condition to check the regularity,causality and stability of discrete-time T-S fuzzy descriptor systems; a new sufficient condition for the discrete-time T-S fuzzy descriptor systems to be admissible is proposed in terms of strict linear matrix inequalities( LMIs). And a sufficient condition is proposed for the existence of state feedback controller in terms of a set of coupled strict LMIs.Finally,an illustrative example is presented to demonstrate the effectiveness of the proposed approach.