Using NCEP/NCAR reanalysis and precipitation records of Chinese stations, we have investigated the relationship of interhemispheric oscillation of air mass (IHO) with global lower-level circulation and monsoon anomali...Using NCEP/NCAR reanalysis and precipitation records of Chinese stations, we have investigated the relationship of interhemispheric oscillation of air mass (IHO) with global lower-level circulation and monsoon anomalies in boreal summer. Our results show that the summer IHO explains a greater portion of variance in the abnormal distribution of atmospheric mass over 30°S-60°N as well as the Antarctic. The IHO strongly correlates to the variations of sea level pressure (SLP) in these regions. It is shown that IHO has some influences on both atmospheric mass transports and water vapor fluxes over 30°S-60°N in association with three anomalous cyclonic circulations over land areas of the eastern hemisphere, which is in close relation to the changes in summer monsoon intensity in eastern Asia and western Africa. Composites of summer rainfall anomalies in China for high and low IHO-index years indicate that the eastern Asian summer monsoon is more intense, with positive precipitation anomaly centers in northern and northeastern parts of China, as opposed to the negative center over the mid-lower reaches of the Yangtze River (MLRYR) in stronger IHO years. In weak IHO years, a feeble summer monsoon appears in eastern Asia, leading to positive center of precipitation anomalies displaced into the MLRYR. Furthermore, a teleconnection in wind fields between the western African and eastern Asian monsoon regions was observed in the middle and higher troposphere in the scenario of IHO. The anomalous cyclonic (anticyclonic) circulations along the path of this Africa-East Asia teleconnection were found to be just over the diabatic heating (cooling) centers, suggesting that diabatic forcings are responsible for the formation of this Africa-East Asia teleconnection.展开更多
Using the daily and monthly data of surface air pressure, meridional wind, radiation and water vapor from NCEP/NCAR reanalysis for the period of 1979―2006, we have examined the seasonal variations of the interhemisph...Using the daily and monthly data of surface air pressure, meridional wind, radiation and water vapor from NCEP/NCAR reanalysis for the period of 1979―2006, we have examined the seasonal variations of the interhemispheric oscillations (IHO) in mass field of the global atmosphere. Our results have demonstrated that IHO as observed in surface air pressure field shows the distinct seasonal cycle. This seasonal cycle has an interhemispheric seesaw structure with comparable annual ranges of surface air pressure in the Southern and Northern Hemispheres. Mass of water vapor changes out-of-phase between the Southern and Northern Hemispheres, showing clearly a seasonal cycle with its annual range almost equivalent to annual range of the IHO seasonal cycle. Amazingly, the cross-equatorial flow is found to be induced by annual changes in water vapor mass as a response of the atmosphere to seasonal cycle of forcing from hemispheric net surface short- and long-wave radiations. The IHO seasonality exhibits its larger variations in magnitude in mid-latitudes other than in other regions of the globe. Additionally, our results also show that the global air mass is redistributed seasonally not only between the Northern and Southern Hemispheres but also between land and sea. This land-sea air mass redis- tribution induces a zonal pattern of surface air pressure in the Northern Hemisphere but the meridional pattern in the Southern Hemisphere.展开更多
Bihemispheric atmospheric interaction and teleconnection allow us to deepen our understanding of large-scale climate and weather variability. This study uses 1979-2017 spring NCEP reanalysis to show that there is inte...Bihemispheric atmospheric interaction and teleconnection allow us to deepen our understanding of large-scale climate and weather variability. This study uses 1979-2017 spring NCEP reanalysis to show that there is interrelation between bihemispheric circulations at the extratropics. This is regarded as a significant negative correlation between the Antarctic and the Arctic regional surface air pressure anomalies, which is induced by interhemispheric oscillation (IHO) of the atmospheric mass. The spatial pattern of IHO is characterized by antiphase extratropical airmass anomalies and geopotential height anomalies from the troposphere to stratosphere between the Southern and Northern Hemisphere. IHO is closely related to stronger bihemispheric low-frequency signals such as Antarctic Oscillation and Arctic Oscillation, thereby demonstrating that IHO can be interpreted as a tie in linking these two dominant extratropical circulations of both hemispheres. IHO is associated with a strong meridional teleconnection in zonal winds from the middle-high troposphere to the lower stratosphere, with the wind anomalies in the form of alternate positive-negative wavy bands extending from the Antarctic to Arctic region, which act as a possible approach to interactions between the bihemispheric atmospheric mass. It is argued that IHO-related omega angular momentum anomalies led by the extratropical atmosphere cause the meridional teleconnection of relative angular momenta, thereby giving rise to the zonal wind anomalies. The modeling of GFDL and UKMO as components of the CMIP5 project have been verified, achieving the related IHO structure shown in the present paper.展开更多
基金supported by National Key Technology R & D Pro-gram (Grant No.2007BAC29B02)National Natural Science Foundation of China (Grant No.40675025)+1 种基金Jiangsu Creative Engineering of Postgraduate Fostering (Grant No.CX08B_017Z)Data services were provided by the Atmospheric Data Service Center,Nanjing Institute of Meteorology under the Geoscience Department of National Natural Science Foundation of China
文摘Using NCEP/NCAR reanalysis and precipitation records of Chinese stations, we have investigated the relationship of interhemispheric oscillation of air mass (IHO) with global lower-level circulation and monsoon anomalies in boreal summer. Our results show that the summer IHO explains a greater portion of variance in the abnormal distribution of atmospheric mass over 30°S-60°N as well as the Antarctic. The IHO strongly correlates to the variations of sea level pressure (SLP) in these regions. It is shown that IHO has some influences on both atmospheric mass transports and water vapor fluxes over 30°S-60°N in association with three anomalous cyclonic circulations over land areas of the eastern hemisphere, which is in close relation to the changes in summer monsoon intensity in eastern Asia and western Africa. Composites of summer rainfall anomalies in China for high and low IHO-index years indicate that the eastern Asian summer monsoon is more intense, with positive precipitation anomaly centers in northern and northeastern parts of China, as opposed to the negative center over the mid-lower reaches of the Yangtze River (MLRYR) in stronger IHO years. In weak IHO years, a feeble summer monsoon appears in eastern Asia, leading to positive center of precipitation anomalies displaced into the MLRYR. Furthermore, a teleconnection in wind fields between the western African and eastern Asian monsoon regions was observed in the middle and higher troposphere in the scenario of IHO. The anomalous cyclonic (anticyclonic) circulations along the path of this Africa-East Asia teleconnection were found to be just over the diabatic heating (cooling) centers, suggesting that diabatic forcings are responsible for the formation of this Africa-East Asia teleconnection.
基金the National Natural Science Foundation of China (Grant No. 40675025)the Project of National Key Basic Research Development (Grant No. 2004CB418302)the Key Lab of Meteorological Disasters (KLME) of Nanjing University of Information Science and Technology (NUIST) (Grant No. KLME060101)
文摘Using the daily and monthly data of surface air pressure, meridional wind, radiation and water vapor from NCEP/NCAR reanalysis for the period of 1979―2006, we have examined the seasonal variations of the interhemispheric oscillations (IHO) in mass field of the global atmosphere. Our results have demonstrated that IHO as observed in surface air pressure field shows the distinct seasonal cycle. This seasonal cycle has an interhemispheric seesaw structure with comparable annual ranges of surface air pressure in the Southern and Northern Hemispheres. Mass of water vapor changes out-of-phase between the Southern and Northern Hemispheres, showing clearly a seasonal cycle with its annual range almost equivalent to annual range of the IHO seasonal cycle. Amazingly, the cross-equatorial flow is found to be induced by annual changes in water vapor mass as a response of the atmosphere to seasonal cycle of forcing from hemispheric net surface short- and long-wave radiations. The IHO seasonality exhibits its larger variations in magnitude in mid-latitudes other than in other regions of the globe. Additionally, our results also show that the global air mass is redistributed seasonally not only between the Northern and Southern Hemispheres but also between land and sea. This land-sea air mass redis- tribution induces a zonal pattern of surface air pressure in the Northern Hemisphere but the meridional pattern in the Southern Hemisphere.
基金supported jointly by the National Basic Research Program of China (Grant No. 2015CB953904)the National Natural Science Foundation of China (Grant Nos. 41975073, 41575081 and 41741005)
文摘Bihemispheric atmospheric interaction and teleconnection allow us to deepen our understanding of large-scale climate and weather variability. This study uses 1979-2017 spring NCEP reanalysis to show that there is interrelation between bihemispheric circulations at the extratropics. This is regarded as a significant negative correlation between the Antarctic and the Arctic regional surface air pressure anomalies, which is induced by interhemispheric oscillation (IHO) of the atmospheric mass. The spatial pattern of IHO is characterized by antiphase extratropical airmass anomalies and geopotential height anomalies from the troposphere to stratosphere between the Southern and Northern Hemisphere. IHO is closely related to stronger bihemispheric low-frequency signals such as Antarctic Oscillation and Arctic Oscillation, thereby demonstrating that IHO can be interpreted as a tie in linking these two dominant extratropical circulations of both hemispheres. IHO is associated with a strong meridional teleconnection in zonal winds from the middle-high troposphere to the lower stratosphere, with the wind anomalies in the form of alternate positive-negative wavy bands extending from the Antarctic to Arctic region, which act as a possible approach to interactions between the bihemispheric atmospheric mass. It is argued that IHO-related omega angular momentum anomalies led by the extratropical atmosphere cause the meridional teleconnection of relative angular momenta, thereby giving rise to the zonal wind anomalies. The modeling of GFDL and UKMO as components of the CMIP5 project have been verified, achieving the related IHO structure shown in the present paper.