The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
[Objective] The research aimed to isolate flanking sequences adjacent to the transgenic T-DNA in Brassica napus by an improved inverse PCR method.[Method] Using single clone of transgenic FS4 in Brassica napus as the ...[Objective] The research aimed to isolate flanking sequences adjacent to the transgenic T-DNA in Brassica napus by an improved inverse PCR method.[Method] Using single clone of transgenic FS4 in Brassica napus as the research materials,total DNA was extracted from transgenic Brassica napus by using modified CTAB method.After enzyme digestion and purification,self-joining was made.Two circles of nested PCR and the sequence alignment were carried out.[Result] A fragement with the size of 4.0 kb was amplified ...展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in...The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian componen...The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface contai...In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.展开更多
In reactor physics tests, it is important to monitor sub-criticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear r...In reactor physics tests, it is important to monitor sub-criticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear reactor. This technique is successfully applied at sufficiently high power level or to a core without an external neutron source where the neutron source term in point reactor kinetics equations may be neglected. For operation at low power levels or in the sub-critical domain, the increase in the fluctuation of the neutron signal may cause difficulties in the evaluation of reactivity and the effect of direct emission from the external neutron source may not be neglected. Therefore, contribution of the neutron source must be taken into account and this implies knowledge of a quantity proportional to the source strength, which calls the source term and then it should be determined. The research work has been conducted to measure reactivity with source term using a dedicated reactivity measurement system by the Least Square Inverse Kinetics Method (LSIKM). Application to a simulator of HANARO research reactor, Korea Atomic Energy Research Institute (KAERI), with known source strength and reactivity worth has showed consistent and satisfactory agreement.展开更多
The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization pro...The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.展开更多
Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolv...Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolved problems,which limit its application. The first question is how to find a suitable initial solution while the other one is how to deal with the numerical problems caused by the vertical walls. In this paper,new methods have been proposed to solve above two questions. The methods have also been coded and applied to two parts to test its feasibility.展开更多
This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several mo...This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.展开更多
The development of modern mechanics in recent years has made many importantprogresse in the concepts and methods for nonlinear large deforntation mechanics([1],[2],[3]etc.). The presenl paper is aimed to show how the ...The development of modern mechanics in recent years has made many importantprogresse in the concepts and methods for nonlinear large deforntation mechanics([1],[2],[3]etc.). The presenl paper is aimed to show how the natural co-moving systemmethod and Stokes-Chen,s decomposition theorem can be effectively appliedasymptotically to solving problems of finite defomation elasto-plasticity by inverseasymptotic method for enyineering design purpose. Rigid punch problem is exanipfifiedin the paper.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot crack...In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot cracking of high strength aluminum alloy LY12CZ by synchronous rolling during welding (SRDW)along both sides of the weld at a suitable distance behind the welding arc are examined.Experimental resulte indicate that welding hot cracking of LY12CY can be effectively prevented and the mechanical properties of welded joint can also be improved by the method.It is an important new solution for preventing hot cracking in welding of sheet metal.展开更多
A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary a...A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.展开更多
A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature dur...A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold; while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m-2·K-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32 °C and 18.77 °C for castings by inorganic and organic sand molds.展开更多
This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional ...This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.展开更多
A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first ...A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.展开更多
基金supported by the National Key Research and Development Project (No. 2022YFA1602301)the National Natural Science Foundation of China (Nos. U2267205, 12275361, 12125509, 12222514, 11961141003, and 12005304)+2 种基金the CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholarsthe Continuous-Support Basic Scientific Research Project
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
基金Supported by National 863 Program of China(2006AA10A113)Natural Science foundation of Zhejiang Province(Y306097)~~
文摘[Objective] The research aimed to isolate flanking sequences adjacent to the transgenic T-DNA in Brassica napus by an improved inverse PCR method.[Method] Using single clone of transgenic FS4 in Brassica napus as the research materials,total DNA was extracted from transgenic Brassica napus by using modified CTAB method.After enzyme digestion and purification,self-joining was made.Two circles of nested PCR and the sequence alignment were carried out.[Result] A fragement with the size of 4.0 kb was amplified ...
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金funded by Vice Chancellor of Research at Shiraz University(grant 3GFU2M1820).
文摘The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金support from the National Natural Science Foundation of China(No.42274006,42192535,42242015).
文摘The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61421062 and 61520106004)the Microsoft Research Fund of Asia
文摘In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the nearfield data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.
文摘In reactor physics tests, it is important to monitor sub-criticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear reactor. This technique is successfully applied at sufficiently high power level or to a core without an external neutron source where the neutron source term in point reactor kinetics equations may be neglected. For operation at low power levels or in the sub-critical domain, the increase in the fluctuation of the neutron signal may cause difficulties in the evaluation of reactivity and the effect of direct emission from the external neutron source may not be neglected. Therefore, contribution of the neutron source must be taken into account and this implies knowledge of a quantity proportional to the source strength, which calls the source term and then it should be determined. The research work has been conducted to measure reactivity with source term using a dedicated reactivity measurement system by the Least Square Inverse Kinetics Method (LSIKM). Application to a simulator of HANARO research reactor, Korea Atomic Energy Research Institute (KAERI), with known source strength and reactivity worth has showed consistent and satisfactory agreement.
基金Funded by National Natural Science Foundation of China (No. 50905102)the Natural Science Foundation of Guangdong Province (Nos. 10151503101000033 and 8351503101000001)the Building Fund for the Academic Innovation Team of Shantou University (No. ITC10003)
文摘The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot.The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix.In this way,joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given.Compared with the general Newton iterative method,the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration.So the convergence domain is bigger than that of the general Newton iterative method.Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector.The inverse displacement analysis of the general 6R(six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm.Because the three non-collinear points can be selected at random,the method can be applied to any other types of serial robots.
文摘Even though the inverse method is less accurate than that of the incremental one,it has great potential in the conceptual design stage for its less calculation load and quick speed. However,it faces a number of unsolved problems,which limit its application. The first question is how to find a suitable initial solution while the other one is how to deal with the numerical problems caused by the vertical walls. In this paper,new methods have been proposed to solve above two questions. The methods have also been coded and applied to two parts to test its feasibility.
基金Project supported by the Key Disciplines of Shanghai Municipality (Grant No.S30104)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
文摘The development of modern mechanics in recent years has made many importantprogresse in the concepts and methods for nonlinear large deforntation mechanics([1],[2],[3]etc.). The presenl paper is aimed to show how the natural co-moving systemmethod and Stokes-Chen,s decomposition theorem can be effectively appliedasymptotically to solving problems of finite defomation elasto-plasticity by inverseasymptotic method for enyineering design purpose. Rigid punch problem is exanipfifiedin the paper.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
文摘In this paper a new method for preventing welding hot cracking—the inverse strain method(ISM)is developed on the principle of welding mechan- ics.Effectiveness and feasiblity of method in preventing welding hot cracking of high strength aluminum alloy LY12CZ by synchronous rolling during welding (SRDW)along both sides of the weld at a suitable distance behind the welding arc are examined.Experimental resulte indicate that welding hot cracking of LY12CY can be effectively prevented and the mechanical properties of welded joint can also be improved by the method.It is an important new solution for preventing hot cracking in welding of sheet metal.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475036)
文摘A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.
文摘A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold; while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m-2·K-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32 °C and 18.77 °C for castings by inorganic and organic sand molds.
基金This study was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.2015B37814)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYLX15_0489)+1 种基金the National Natural Science Foundation of China(Grant No.51679081)“the Fundamental Research Funds for the Central Universities”(Grant No.2018B48514).
文摘This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51876010 and 51676019).
文摘A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.