Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers....Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering.展开更多
This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time ...This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM) algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the real time implementations of fuzzy type 2.展开更多
As a result of the popularity of mobile devices,Mobile Crowd Sensing (MCS) has attracted a lot of attention. Task allocation is a significant problem in MCS. Most previous studies mainly focused on stationary spatial ...As a result of the popularity of mobile devices,Mobile Crowd Sensing (MCS) has attracted a lot of attention. Task allocation is a significant problem in MCS. Most previous studies mainly focused on stationary spatial tasks while neglecting the changes of tasks and workers. In this paper,the proposed hybrid two-phase task allocation algorithm considers heterogeneous tasks and diverse workers.For heterogeneous tasks,there are different start times and deadlines. In each round,the tasks are divided into urgent and non-urgent tasks. The diverse workers are classified into opportunistic and participatory workers.The former complete tasks on their way,so they only receive a fixed payment as employment compensation,while the latter commute a certain distance that a distance fee is paid to complete the tasks in each round as needed apart from basic employment compensation. The task allocation stage is divided into multiple rounds consisting of the opportunistic worker phase and the participatory worker phase. At the start of each round,the hiring of opportunistic workers is considered because they cost less to complete each task. The Poisson distribution is used to predict the location that the workers are going to visit,and greedily choose the ones with high utility. For participatory workers,the urgent tasks are clustered by employing hierarchical clustering after selecting the tasks from the uncompleted task set.After completing the above steps,the tasks are assigned to participatory workers by extending the Kuhn-Munkres (KM) algorithm.The rest of the uncompleted tasks are non-urgent tasks which are added to the task set for the next round.Experiments are conducted based on a real dataset,Brightkite,and three typical baseline methods are selected for comparison. Experimental results show that the proposed algorithm has better performance in terms of total cost as well as efficiency under the constraint that all tasks are completed.展开更多
文摘Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering.
文摘This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM) algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the real time implementations of fuzzy type 2.
基金National Natural Science Foundation of China(62102275,U20A20182,61873177,62072322)Natural Science Foundation of Jiangsu Province in China(BK20210704)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB520025).
文摘As a result of the popularity of mobile devices,Mobile Crowd Sensing (MCS) has attracted a lot of attention. Task allocation is a significant problem in MCS. Most previous studies mainly focused on stationary spatial tasks while neglecting the changes of tasks and workers. In this paper,the proposed hybrid two-phase task allocation algorithm considers heterogeneous tasks and diverse workers.For heterogeneous tasks,there are different start times and deadlines. In each round,the tasks are divided into urgent and non-urgent tasks. The diverse workers are classified into opportunistic and participatory workers.The former complete tasks on their way,so they only receive a fixed payment as employment compensation,while the latter commute a certain distance that a distance fee is paid to complete the tasks in each round as needed apart from basic employment compensation. The task allocation stage is divided into multiple rounds consisting of the opportunistic worker phase and the participatory worker phase. At the start of each round,the hiring of opportunistic workers is considered because they cost less to complete each task. The Poisson distribution is used to predict the location that the workers are going to visit,and greedily choose the ones with high utility. For participatory workers,the urgent tasks are clustered by employing hierarchical clustering after selecting the tasks from the uncompleted task set.After completing the above steps,the tasks are assigned to participatory workers by extending the Kuhn-Munkres (KM) algorithm.The rest of the uncompleted tasks are non-urgent tasks which are added to the task set for the next round.Experiments are conducted based on a real dataset,Brightkite,and three typical baseline methods are selected for comparison. Experimental results show that the proposed algorithm has better performance in terms of total cost as well as efficiency under the constraint that all tasks are completed.