期刊文献+
共找到5,165篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于Least Square Method算法的城轨车辆车门动作时间精准判断的研究
1
作者 李宏菱 宋华杰 +3 位作者 马仲智 周辉 李晴 陈龙 《时代汽车》 2025年第3期190-192,共3页
为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波... 为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波形矫正模型,利用数学方法校准波形,让MCU找出最佳计时点并处理(误差不超过10ms),采用最小二乘法模型,通过最小化误差的平方和找到一组数据的最佳函数匹配,求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,可精准地得到门动作时间。模拟测试结果表明,门动作时间测算误差所示其误差为7.42ms,小于10ms。 展开更多
关键词 城轨车辆 客室车门 电机码盘 Least square Method算法 门动作时间精准
在线阅读 下载PDF
Variable Step Filtered-X Least Mean Square Algorithm Based on Piecewise Logarithmic Function
2
作者 Zeyi Ding Jianan Bian +1 位作者 Xinyuan Jiang Xi Chen 《Journal of Physical Science and Application》 2024年第1期16-24,共9页
In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS ... In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect. 展开更多
关键词 Active noise control filtered-x least mean square algorithm variable step size genetic algorithm
在线阅读 下载PDF
Real-Time Patient-Specific ECG Arrhythmia Detection by Quantum Genetic Algorithm of Least Squares Twin SVM 被引量:4
3
作者 Duan Li Ruizheng Shi +2 位作者 Ni Yao Fubao Zhu Ke Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期29-37,共9页
The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morph... The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device. 展开更多
关键词 WEARABLE ECG monitoring systems PATIENT-SPECIFIC ARRHYTHMIA classification quantum genetic algorithm least squareS TWIN SVM
在线阅读 下载PDF
Quantitative structure-property relationship study of the solubility of thiazolidine-4-carboxylic acid derivatives using ab initio and genetic algorithm-partial least squares 被引量:1
4
作者 Ali Niazi Saeed Jameh-Bozorghi Davood Nori-Shargh 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第5期621-624,共4页
A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calcul... A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively. 展开更多
关键词 Ab initio Partial least squares Genetic algorithm SOLUBILITY THIAZOLIDINE
在线阅读 下载PDF
A Method for Assessing Customer Harmonic Emission Level Based on the Iterative Algorithm for Least Square Estimation 被引量:1
5
作者 Runrong Fan Tianyuan Tan +2 位作者 Hui Chang Xiaoning Tong Yunpeng Gao 《Engineering(科研)》 2013年第9期6-13,共8页
With the power system harmonic pollution problems becoming more and more serious, how to distinguish the harmonic responsibility accurately and solve the grid harmonics simply and effectively has become the main devel... With the power system harmonic pollution problems becoming more and more serious, how to distinguish the harmonic responsibility accurately and solve the grid harmonics simply and effectively has become the main development direction in harmonic control subjects. This paper, based on linear regression analysis of basic equation and improvement equation, deduced the least squares estimation (LSE) iterative algorithm and obtained the real-time estimates of regression coefficients, and then calculated the level of the harmonic impedance and emission estimates in real time. This paper used power system simulation software Matlab/Simulink as analysis tool and analyzed the user side of the harmonic amplitude and phase fluctuations PCC (point of common coupling) at the harmonic emission level, thus the research has a certain theoretical significance. The development of this algorithm combined with the instrument can be used in practical engineering. 展开更多
关键词 HARMONIC Emission LEVEls HARMONIC Analysis Least square Estimation ITERATIVE algorithm
在线阅读 下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
6
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine ls- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
APPLICATION OF LEAST MEDIAN OF SQUARED ORTHOGONAL DISTANCE (LMD) AND LMD BASED REWEIGHTED LEAST SQUARES (RLS) METHODS ON THE STOCK RECRUITMENT RELATIONSHIP
7
作者 王艳君 刘群 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1999年第1期70-78,62,共10页
Analysis of stock recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually re... Analysis of stock recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored. 展开更多
关键词 STOCK RECRUITMENT relationship least squareS (ls) least MEDIAN of squared ORTHOGONAL distance (LMD) LMD based reweighted least squareS (Rls)
在线阅读 下载PDF
基于改进SVD和LS-Prony的电机转子断条故障诊断
8
作者 贾朱植 康云娟 +2 位作者 祝洪宇 张博 宋向金 《电子测量技术》 北大核心 2025年第3期100-111,共12页
采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法... 采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法对噪声异常敏感,当电机低频低负载运行时同样存在故障特征提取能力不足和诊断失效的问题。为解决上述问题,提出改进奇异值分解和LS-PA算法相结合的转子断条故障诊断方法。首先采用按列截断方式重构奇异值分解矩阵,根据奇异值差商确定有效阶次,进而对定子电流信号进行预处理以适度抑制噪声,然后运用LS-PA算法对预处理后的信号做故障特征识别和诊断。有限元仿真和实验分析结果表明,所提出的方法能有效抑制电流信号噪声,具有短时数据高分辨率的诊断性能,在工频和变频供电时均能实现电机轻载到满载全工况稳定运行条件下的转子断条故障诊断,诊断性能高于经典的FFT方法。 展开更多
关键词 故障诊断 奇异值分解 最小二乘Prony算法 电机定子电流信号特征分析
在线阅读 下载PDF
CONVERGENCE AND STABILITY OF RECURSIVE DAMPED LEAST SQUARE ALGORITHM
9
作者 陈增强 林茂琼 袁著祉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第2期237-242,共6页
The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive da... The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded. 展开更多
关键词 system identification damped least square recursive algorithm CONVERGENCE STABILITY
在线阅读 下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
10
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting FRUIT FLY optimization algorithm(FOA) least squareS support vector machine(lsSVM) SEASONAL index
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断
11
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
12
作者 吕干云 程浩忠 翟海保 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances... A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network ls weighted fusion algorithm improved PLL system
在线阅读 下载PDF
基于FFRLS的锂离子电池全工况等效电路模型
13
作者 孙中旺 刘冲 +3 位作者 刘春桥 江新天 靖知川 吕龙 《电池》 北大核心 2025年第1期78-84,共7页
在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线... 在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线辨识精度不足、离线辨识精度较高的特点,提出全工况自适应输出等效电路模型,以提升的模型精度。基于实际工况的仿真实验表明:全工况等效电路模型较单一恒流工况精度更高。全工况模型结合了离线和在线辨识算法,具有更小的误差,为0.68%。 展开更多
关键词 锂离子电池 等效电池模型 最小二乘(ls)算法 全工况模型
在线阅读 下载PDF
Dislocation parameters of Gonghe earthquake jointly inferred by using genetic algorithms and least squares method
14
作者 王文萍 王庆良 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1999年第3期314-320,共7页
The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical d... The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution. 展开更多
关键词 genetic algorithms least squares method Gonghe earthquake dislocation model
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法
15
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
基于LGWO-LSTSVR的电解质温度预测
16
作者 徐辰华 何俊隆 《计算机与数字工程》 2025年第2期572-577,共6页
为了解决铝电解过程的复杂性导致铝电解槽的电解质温度难以直接测量的问题,论文采用改进灰狼优化算法(LGWO)与最小二乘孪生支持向量回归机(LSTSVR)建立电解质温度预测模型。首先利用最小二乘孪生支持向量回归机建立电解质温度预测模型;... 为了解决铝电解过程的复杂性导致铝电解槽的电解质温度难以直接测量的问题,论文采用改进灰狼优化算法(LGWO)与最小二乘孪生支持向量回归机(LSTSVR)建立电解质温度预测模型。首先利用最小二乘孪生支持向量回归机建立电解质温度预测模型;然后针对最小二乘孪生支持向量回归机的结构参数选取不佳的情况,利用改进的灰狼算法对最小二乘孪生支持向量回归机的结构参数进行参数寻优,利用Logistic混沌策略,位置更新策略和高斯变异策略来提高GWO算法的全局优化能力,优化最小二乘孪生支持向量回归机以获得较高预测精度;最后利用广西某铝厂实际铝电解生产数据对LGWO-LSTSVR模型进行验证,实验结果表明,LGWO-LSTSVR的电解质温度预测模型具有较好的预测效果,能更准确地预测电解质温度。 展开更多
关键词 电解质温度预测 灰狼优化算法 最小二乘孪生支持向量回归机 混沌映射
在线阅读 下载PDF
NEW EFFICIENT ORDER-RECURSIVE LEAST-SQUARES ALGORITHMS
17
作者 尤肖虎 何振亚 《Journal of Southeast University(English Edition)》 EI CAS 1989年第2期1-10,共10页
Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ... Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered. 展开更多
关键词 SIGNAL PROCESSING PARAMETER estimation/fast RECURSIVE LEAST-squareS algorithm
在线阅读 下载PDF
PCR ALGORITHM FOR PARALLEL COMPUTING MINIMUM-NORM LEAST-SQUARES SOLUTION OF INCONSISTENT LINEAR EQUATIONS
18
作者 王国荣 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1993年第1期1-10,共10页
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt... This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise. 展开更多
关键词 Parallel algorithm the minimum-norm LEAST-squareS solution inconsistent linear EQUATIONS generalized inverse.
在线阅读 下载PDF
一种用于气候室相对湿度预测的MSPOA-LSSVM模型研究
19
作者 王一诺 郑焕祺 +1 位作者 杨胜坤 周玉成 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期97-105,共9页
针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构... 针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构建MSPOA-LSSVM相对湿度预测模型。针对鹈鹕优化算法寻优能力不足的问题,使用随机对立学习初始化种群,引入融合鲸鱼优化的正余弦策略和动态权重因子策略,提高算法性能。将MSPOA-LSSVM模型与4种机器学习模型进行对比实验,结果表明,MSPOA-LSSVM模型决定系数、均方根误差分别为0.964和0.07389,均低于其他模型,可为解决相对湿度控制精度不足问题提供参考。 展开更多
关键词 气候室 相对湿度预测 鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于WLS-AUKF混合算法的主动配电网联合状态估计
20
作者 满延露 刘敏 《电子科技》 2025年第2期93-102,共10页
响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波... 响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波(Adaptive Untraced Kalman Filtering,AUKF)的主动配电网联合状态估计。通过改进粒子群优化算法(Metropolis-Hastings Crossover Particle Swarm Optimization,MHCPSO)实现PMU优化配置,再结合WLS和AUKF提出联合状态估计。联合方式是WLS为AUKF馈送稳健的量测数据,AUKF为WLS提供先验预测值并补充量测冗余。仿真结果表明,在相同PMU数量下,MHCPSO算法比遗传粒子群算法(Genetic Algorithm Particle Swarm Optimization,GAPSO)估计精度更高。在相同状态估计误差情况下,MHCPSO算法配置的PMU数量比GAPSO算法可最多减少4个。在光伏(Photovoltaic,PV)/电动汽车(Electric Vehicles,EV)并网无序充放电和某一时刻负荷突变情况下,WLS-AUKF算法均体现出了比UKF(Untraced Kalman Filtering)算法更好的估计性能。在PMU配置优化、PV/VE并网以及负荷突变3个场景中体现出了WLS-AUKF状态估计的高精度、经济性、抗差性和稳健性。 展开更多
关键词 主动配电网 联合状态估计 加权最小二乘法 自适应无迹卡尔曼滤波 PMU优化配置 改进粒子群算法 两点交叉法 Metropolis-Hastings算法 遗传粒子群算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部