针对乳腺肿瘤的诊断率及精准度较低的情况,提出一种基于改进的矢量量化(LVQ)神经网络乳腺肿瘤诊断算法。首先,基于LVQ1算法和LVQ2算法在网络训练过程中更新神经元数目的不同,建立结合LVQ1算法和LVQ2算法的复合LVQ神经网络;然后,考虑到...针对乳腺肿瘤的诊断率及精准度较低的情况,提出一种基于改进的矢量量化(LVQ)神经网络乳腺肿瘤诊断算法。首先,基于LVQ1算法和LVQ2算法在网络训练过程中更新神经元数目的不同,建立结合LVQ1算法和LVQ2算法的复合LVQ神经网络;然后,考虑到不同的竞争层节点数对LVQ神经网络诊断率的影响,采用K交叉验证法确定复合LVQ最佳网络结构;最后,探讨了不变的学习率在网络训练后期对收敛速度的影响,采用自适应速率算法调整学习率,减少迭代次数。以Wisconsin Breast Cancer Database为实验样本,运用改进算法构造乳腺肿瘤与症状之间的非线性映射关系,用混淆矩阵的概念表达算法诊断准确率。实验结果表明,提出的改进算法诊断准确率达97.1%,相比LVQ1算法和LVQ2算法,误诊率分别降低了5.8%和2.9%。展开更多
针对软件可靠性早期预测中软件复杂性度量属性维数灾难问题,提出了一种基于最小绝对值压缩与选择方法(The Least Absolute Shrinkage and Select Operator,LASSO)和最小角回归(Least Angle Regression,LARS)算法的软件复杂性度量属性特...针对软件可靠性早期预测中软件复杂性度量属性维数灾难问题,提出了一种基于最小绝对值压缩与选择方法(The Least Absolute Shrinkage and Select Operator,LASSO)和最小角回归(Least Angle Regression,LARS)算法的软件复杂性度量属性特征选择方法。该方法筛选掉一些对早期预测结果影响较小的软件复杂性度量属性,得到与早期预测关系最为密切的关键属性子集。首先分析了LASSO回归方法的特点及其在特征选择中的应用,然后对LARS算法进行了修正,使其可以解决LASSO方法所涉及的问题,得到相关的复杂性度量属性子集。最后结合学习向量量化(Learning Vector Quantization,LVQ)神经网络进行软件可靠性早期预测,并基于十折交叉方法进行实验。通过与传统特征选择方法相比较,证明所提方法可以显著提高软件可靠性早期预测精度。展开更多
文摘针对乳腺肿瘤的诊断率及精准度较低的情况,提出一种基于改进的矢量量化(LVQ)神经网络乳腺肿瘤诊断算法。首先,基于LVQ1算法和LVQ2算法在网络训练过程中更新神经元数目的不同,建立结合LVQ1算法和LVQ2算法的复合LVQ神经网络;然后,考虑到不同的竞争层节点数对LVQ神经网络诊断率的影响,采用K交叉验证法确定复合LVQ最佳网络结构;最后,探讨了不变的学习率在网络训练后期对收敛速度的影响,采用自适应速率算法调整学习率,减少迭代次数。以Wisconsin Breast Cancer Database为实验样本,运用改进算法构造乳腺肿瘤与症状之间的非线性映射关系,用混淆矩阵的概念表达算法诊断准确率。实验结果表明,提出的改进算法诊断准确率达97.1%,相比LVQ1算法和LVQ2算法,误诊率分别降低了5.8%和2.9%。