To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate...To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate data. Two error indicators for defining ellipticity are discussed, namely the form error and the profile error, and the difference between both is considered as the main parameter for evaluating machining quality of surface and profile. Because the form error and the profile error rely on different evaluation benchmarks, the major axis and the foci rather than the centre of an ellipse are used as the evaluation benchmarks and can accurately evaluate a tolerance range with the separated form error and profile error of workpiece. Additionally, an evaluation program based on the LS model is developed to extract the form error and the profile error of the elliptic section, which is well suited for separating the two errors by a standard program. Finally, the evaluation method about the form and profile errors of the ellipse is applied to the measurement of skirt line of the piston, and results indicate the effectiveness of the evaluation. This approach provides the new evaluation indicators for the measurement of form and profile errors of ellipse, which is found to have better accuracy and can thus be used to solve the difficult of the measurement and evaluation of the piston in industrial production.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
The efficiency of an optimization method for acoustic emission/microseismic(AE/MS) source location is determined by the compatibility of its error definition with the errors contained in the input data.This compatib...The efficiency of an optimization method for acoustic emission/microseismic(AE/MS) source location is determined by the compatibility of its error definition with the errors contained in the input data.This compatibility can be examined in terms of the distribution of station residuals.For an ideal distribution,the input error is held at the station where it takes place as the station residual and the error is not permitted to spread to other stations.A comparison study of two optimization methods,namely the least squares method and the absolute value method,shows that the distribution with this character constrains the input errors and minimizes their impact,which explains the much more robust performance by the absolute value method in dealing with large and isolated input errors.When the errors in the input data are systematic and/or extreme in that the basic data structure is altered by these errors,none of the optimization methods are able to function.The only means to resolve this problem is the early detection and correction of these errors through a data screening process.An efficient data screening process is of primary importance for AE/MS source location.In addition to its critical role in dealing with those systematic and extreme errors,data screening creates a favorable environment for applying optimization methods.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ...The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least sq...The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.展开更多
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th...A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).展开更多
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co...An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.展开更多
A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary ...A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecol...Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecological carrying capacity) including 24 third-grade indicators was established,and the carrying capacity of land resources in ten cities of Shaanxi Province in 2013 was assessed and analyzed by using mean square error analysis method and hierarchical clustering method. The results showed that the three types of carrying capacity in most cities of Shaanxi Province are shown as follows: ecological carrying capacity > living carrying capacity > production carrying capacity,and the differences between various regions in a single type of carrying capacity basically accorded with the actual situation of development in each city; there were obvious differences between various cities in the comprehensive carrying capacity of land resources,which was basically consistent with regional economic and social development.展开更多
Based on the two-level supply chain composed of suppliers and retailers, we assume that market demand is subject to an ARIMA(1, 1, 1). The supplier uses the minimum mean square error method (MMSE), the simple moving a...Based on the two-level supply chain composed of suppliers and retailers, we assume that market demand is subject to an ARIMA(1, 1, 1). The supplier uses the minimum mean square error method (MMSE), the simple moving average method (SMA) and the weighted moving average method (WMA) respectively to forecast the market demand. According to the statistical properties of stationary time series, we calculate the mean square error between supplier forecast demand and market demand. Through the simulation, we compare the forecasting effects of the three methods and analyse the influence of the lead-time L and the moving average parameter N on prediction. The results show that the forecasting effect of the MMSE method is the best, of the WMA method is the second, and of the SMA method is the last. The results also show that reducing the lead-time and increasing the moving average parameter improve the prediction accuracy and reduce the supplier inventory level.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51575438)
文摘To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate data. Two error indicators for defining ellipticity are discussed, namely the form error and the profile error, and the difference between both is considered as the main parameter for evaluating machining quality of surface and profile. Because the form error and the profile error rely on different evaluation benchmarks, the major axis and the foci rather than the centre of an ellipse are used as the evaluation benchmarks and can accurately evaluate a tolerance range with the separated form error and profile error of workpiece. Additionally, an evaluation program based on the LS model is developed to extract the form error and the profile error of the elliptic section, which is well suited for separating the two errors by a standard program. Finally, the evaluation method about the form and profile errors of the ellipse is applied to the measurement of skirt line of the piston, and results indicate the effectiveness of the evaluation. This approach provides the new evaluation indicators for the measurement of form and profile errors of ellipse, which is found to have better accuracy and can thus be used to solve the difficult of the measurement and evaluation of the piston in industrial production.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
文摘The efficiency of an optimization method for acoustic emission/microseismic(AE/MS) source location is determined by the compatibility of its error definition with the errors contained in the input data.This compatibility can be examined in terms of the distribution of station residuals.For an ideal distribution,the input error is held at the station where it takes place as the station residual and the error is not permitted to spread to other stations.A comparison study of two optimization methods,namely the least squares method and the absolute value method,shows that the distribution with this character constrains the input errors and minimizes their impact,which explains the much more robust performance by the absolute value method in dealing with large and isolated input errors.When the errors in the input data are systematic and/or extreme in that the basic data structure is altered by these errors,none of the optimization methods are able to function.The only means to resolve this problem is the early detection and correction of these errors through a data screening process.An efficient data screening process is of primary importance for AE/MS source location.In addition to its critical role in dealing with those systematic and extreme errors,data screening creates a favorable environment for applying optimization methods.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the National Natural Science Foundation of China,Grant Nos.42174011,41874001 and 41664001Innovation Found Designated for Graduate Students of ECUT,Grant No.DHYC-202020。
文摘The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.
文摘A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).
基金supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269)the Fund of Xi'an Jiaotong University(No.2009xjtujc30)
文摘An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.
文摘A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
文摘Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecological carrying capacity) including 24 third-grade indicators was established,and the carrying capacity of land resources in ten cities of Shaanxi Province in 2013 was assessed and analyzed by using mean square error analysis method and hierarchical clustering method. The results showed that the three types of carrying capacity in most cities of Shaanxi Province are shown as follows: ecological carrying capacity > living carrying capacity > production carrying capacity,and the differences between various regions in a single type of carrying capacity basically accorded with the actual situation of development in each city; there were obvious differences between various cities in the comprehensive carrying capacity of land resources,which was basically consistent with regional economic and social development.
文摘Based on the two-level supply chain composed of suppliers and retailers, we assume that market demand is subject to an ARIMA(1, 1, 1). The supplier uses the minimum mean square error method (MMSE), the simple moving average method (SMA) and the weighted moving average method (WMA) respectively to forecast the market demand. According to the statistical properties of stationary time series, we calculate the mean square error between supplier forecast demand and market demand. Through the simulation, we compare the forecasting effects of the three methods and analyse the influence of the lead-time L and the moving average parameter N on prediction. The results show that the forecasting effect of the MMSE method is the best, of the WMA method is the second, and of the SMA method is the last. The results also show that reducing the lead-time and increasing the moving average parameter improve the prediction accuracy and reduce the supplier inventory level.