Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ...Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.展开更多
This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-...This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induce...Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and...This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of ...Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
Security attributes are the premise and foundation for implementing Attribute-Based Access Control(ABAC)mechanisms.However,when dealing with massive volumes of unstructured text big data resources,the current attribut...Security attributes are the premise and foundation for implementing Attribute-Based Access Control(ABAC)mechanisms.However,when dealing with massive volumes of unstructured text big data resources,the current attribute management methods based on manual extraction face several issues,such as high costs for attribute extraction,long processing times,unstable accuracy,and poor scalability.To address these problems,this paper proposes an attribute mining technology for access control institutions based on hybrid capsule networks.This technology leverages transfer learning ideas,utilizing Bidirectional Encoder Representations from Transformers(BERT)pre-trained language models to achieve vectorization of unstructured text data resources.Furthermore,we have designed a novel end-to-end parallel hybrid network structure,where the parallel networks handle global and local information features of the text that they excel at,respectively.By employing techniques such as attention mechanisms,capsule networks,and dynamic routing,effective mining of security attributes for access control resources has been achieved.Finally,we evaluated the performance level of the proposed attribute mining method for access control institutions through experiments on the medical referral text resource dataset.The experimental results show that,compared with baseline algorithms,our method adopts a parallel network structure that can better balance global and local feature information,resulting in improved overall performance.Specifically,it achieves a comprehensive performance enhancement of 2.06%to 8.18%in the F1 score metric.Therefore,this technology can effectively provide attribute support for access control of unstructured text big data resources.展开更多
In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.T...In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.展开更多
This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introdu...This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw...A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金supported by the National Natural Science Foundation of China under Grant U21A20449in part by Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2。
文摘Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.
文摘This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074011 and 60174009), and Youth Science and Tech-nology Foundation of Shanxi Province (No. 20051020), China
文摘Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金supported by the National Natural Science Foundation of China(6110410661473195)+1 种基金the Natural Science Foundation of Liaoning Province(201202156)the Program for Liaoning Excellent Talents in University(LJQ2012100)
文摘This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
基金supported by Beijing Natural Science Foundation(2222037)the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese Academy of Sciences(Innovation of talent cultivation model for“dual carbon”in chemical engineering industry,E3E56501A2).
文摘Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.
基金supported by National Natural Science Foundation of China(No.62102449).
文摘Security attributes are the premise and foundation for implementing Attribute-Based Access Control(ABAC)mechanisms.However,when dealing with massive volumes of unstructured text big data resources,the current attribute management methods based on manual extraction face several issues,such as high costs for attribute extraction,long processing times,unstable accuracy,and poor scalability.To address these problems,this paper proposes an attribute mining technology for access control institutions based on hybrid capsule networks.This technology leverages transfer learning ideas,utilizing Bidirectional Encoder Representations from Transformers(BERT)pre-trained language models to achieve vectorization of unstructured text data resources.Furthermore,we have designed a novel end-to-end parallel hybrid network structure,where the parallel networks handle global and local information features of the text that they excel at,respectively.By employing techniques such as attention mechanisms,capsule networks,and dynamic routing,effective mining of security attributes for access control resources has been achieved.Finally,we evaluated the performance level of the proposed attribute mining method for access control institutions through experiments on the medical referral text resource dataset.The experimental results show that,compared with baseline algorithms,our method adopts a parallel network structure that can better balance global and local feature information,resulting in improved overall performance.Specifically,it achieves a comprehensive performance enhancement of 2.06%to 8.18%in the F1 score metric.Therefore,this technology can effectively provide attribute support for access control of unstructured text big data resources.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under the Grant No.14201621。
文摘In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.
文摘This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China Project(No.62302540)The Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+2 种基金Natural Science Foundation of Henan Province Project(No.232300420422)The Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018)Key Research and Promotion Project of Henan Province in 2021(No.212102310480).
文摘A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.