期刊文献+
共找到236,702篇文章
< 1 2 250 >
每页显示 20 50 100
Optical techniques in non-destructive detection of wheat quality:A review 被引量:1
1
作者 Lei Li Si Chen +1 位作者 Miaolei Deng Zhendong Gao 《Grain & Oil Science and Technology》 2022年第1期44-57,共14页
Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis... Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future. 展开更多
关键词 WHEAT QUALITY Optical technology non-destructive detection
在线阅读 下载PDF
Multi-Energy Gamma-Ray Attenuations for Non-Destructive Detection of Hazardous Materials
2
作者 Kaylyn Olshanoski Chary Rangacharyulu 《Journal of Modern Physics》 2022年第1期66-80,共15页
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment... We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc. 展开更多
关键词 non-destructive detection Multi-Energy Photons Radioactive Sources Intensity Measurements Safety and Security XCOM Calculations
在线阅读 下载PDF
Compressed sensing and Otsu's method based binary CT image reconstruction technique in non-destructive detection
3
作者 任勇 何鹏 +3 位作者 王洪良 岑仲洁 冯鹏 魏彪 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第5期63-68,共6页
This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image o... This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data. 展开更多
关键词 CT图像重建 无损检测 OTSU方法 重建技术 压缩 OTSU法 传感 检测数据
在线阅读 下载PDF
Acoustic Non-Destructive Testing Technology in Concrete Bridge Inspection and Pile Foundation Detection
4
作者 Wei Fu 《Journal of Architectural Research and Development》 2024年第1期20-25,共6页
This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ... This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects. 展开更多
关键词 Concrete bridge Bridge detection Acoustic detection non-destructive testing technology
在线阅读 下载PDF
Rapid on-line non-destructive detection of the moisture content of corn ear by bioelectrical impedance spectroscopy 被引量:3
5
作者 Zhao Pengfei Zhang Hanlin +5 位作者 Zhao Dongjie Wang Zhijie Fan Lifeng Huang Lan Ma Qin Wang Zhongyi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第6期37-45,共9页
Moisture content of corn directly affects its quality and storage time,and the rapid on-line detection of the moisture content of corn ears not threshed or in vivo in the fields is required.Because of the special shap... Moisture content of corn directly affects its quality and storage time,and the rapid on-line detection of the moisture content of corn ears not threshed or in vivo in the fields is required.Because of the special shape of corn ear,the rapid,low cost and non-destructive bioelectrical impedance measurement is more suitable for its moisture content detection.Using the four-electrode method with the Agilent E4980A precision LCR meter,the electrical impedance spectroscopies of the sweet corn ears and waxy corn ears at different moisture contents were acquired.The frequency range of the detection was from 20 Hz to 2 MHz and to enhance the contact,the attached-type electrodes were wrapped in cotton soaked with 0.1%NaCl solution.The impedance data over the frequency range from 300 Hz to 5 kHz were used to obtain the parameters of the bio-impedance Cole-Cole model.The results showed a good linear correlation(coefficient of determination R2=0.960)between the equivalent parallel resistance R∞of sweet corn ear and the moisture content value determined by standard chemical method.The research proved that the bioelectrical impedance spectroscopy can be used for detecting the moisture content of corn ear. 展开更多
关键词 moisture content non-destructive detection bioelectrical impedance spectroscopy corn ear
原文传递
PD-YOLO:Colon Polyp Detection Model Based on Enhanced Small-Target Feature Extraction
6
作者 Yicong Yu Kaixin Lin +2 位作者 Jiajun Hong Rong-Guei Tsai Yuanzhi Huang 《Computers, Materials & Continua》 SCIE EI 2025年第1期913-928,共16页
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s... In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods. 展开更多
关键词 Polyp detection YOLOv7 SPD-Conv CBAM DECONVOLUTION
在线阅读 下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
7
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
在线阅读 下载PDF
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
8
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 Deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
在线阅读 下载PDF
Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack
9
作者 Jing Guo Ziying Wang +1 位作者 Yajuan Guo Haitao Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期427-442,共16页
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg... The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure. 展开更多
关键词 Anomaly detection electric vehicle aggregation attack deep cross-network
在线阅读 下载PDF
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
10
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 Deep learning underwater target detection attention mechanism
在线阅读 下载PDF
A Survey of Link Failure Detection and Recovery in Software-Defined Networks
11
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期103-137,共35页
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance... Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods. 展开更多
关键词 Software defined networking failure detection failure recovery RESTORATION PROTECTION
在线阅读 下载PDF
A Robust Security Detection Strategy for Next Generation IoT Networks
12
作者 Hafida Assmi Azidine Guezzaz +4 位作者 Said Benkirane Mourade Azrour Said Jabbour Nisreen Innab Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2025年第1期443-466,共24页
Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f... Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS. 展开更多
关键词 IoT security intrusion detection RF KNN SVM EL NSL-KDD Edge-IIoT
在线阅读 下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
13
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
在线阅读 下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
14
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
在线阅读 下载PDF
Unmasking Social Robots’Camouflage:A GNN-Random Forest Framework for Enhanced Detection
15
作者 Weijian Fan Chunhua Wang +1 位作者 Xiao Han Chichen Lin 《Computers, Materials & Continua》 SCIE EI 2025年第1期467-483,共17页
The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection h... The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods. 展开更多
关键词 Social robot detection graph neural networks random forest HOMOPHILY heterophily
在线阅读 下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
16
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
17
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Evaluation of On-Vehicle Bone-Conduct Acoustic Emission Detection for Rail Defects
18
作者 Lei Jia Jee Woong Park +2 位作者 Ming Zhu Yingtao Jiang Hualiang Teng 《Journal of Transportation Technologies》 2025年第1期95-121,共27页
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,... Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches. 展开更多
关键词 Railroad Infrastructure Rail Defect detection Rail Health Monitoring Wavelet Analysis Acoustic Emission detection
在线阅读 下载PDF
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
19
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
在线阅读 下载PDF
Research on SAR Image Lightweight Detection Based on Improved YOLOV8
20
作者 WANG Qing SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第1期93-100,共8页
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal... In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value. 展开更多
关键词 YOLOv8 Synthetic aperture radar image LIGHTWEIGHT Target detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部