This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rat...This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.展开更多
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on ...Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,...This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.展开更多
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒...在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix ...The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.展开更多
The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapuno...The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.展开更多
We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic sta...We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.展开更多
In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogen...In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.展开更多
For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using th...For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
基金supported by the National Research Foundation Singapore under its AI Singapore Programme(Award Number:[AISG2-GC-2023-007]).
文摘This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
基金Project supported by the National Natural Science Foundation of China(Nos.12102015 and 12472003)the R&D Program of Beijing Municipal Education Commission of China(No.KM202110005030)。
文摘Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金“National Science and Technology Council”(NSTC 111-2221-E-027-088)。
文摘This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
文摘在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
基金supported by the National Natural Science Foundation of China(60874114)
文摘The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.
基金supported by the National Natural Science Foundation of China (60574011)
文摘The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.
基金Project supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (Grant No.2010-0009373)
文摘We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
基金Supported by the Education Department of Henan Province(200511517007)
文摘In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.
基金partially supported by the Natural Science Foundation of China under Grant No. 60764001the West Light Talent Project of The Chinese Academy of Sciences(2007414)the Indraught Talents Foundation of Guizhou University(2007)
文摘For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.