Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a c...In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.展开更多
Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show t...Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.展开更多
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces...A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.展开更多
To speedily regulate and precisely control a hydraulic power system in a unmanned walking platform(UWP),based on the brief analysis of digital PID and its shortcomings,dual control parameters in a hydraulic power syst...To speedily regulate and precisely control a hydraulic power system in a unmanned walking platform(UWP),based on the brief analysis of digital PID and its shortcomings,dual control parameters in a hydraulic power system are given for the precision requirement,and a control strategy for dual relative control parameters in the dual loop PID is put forward,a load and throttle rotation-speed response model for variable pump and gasoline engine is provided according to a physical process,a simplified neural network structure PID is introduced,and formed mixed neural network PID(MNN PID)to control rotation speed of engine and pressure of variable pump,calculation using the back propagation(BP)algorithm and a self-adapted learning step is made,including a mathematic principle and a calculation flow scheme,the BP algorithm of neural network PID is trained and the control effect of system is simulated in Matlab environment,real control effects of engine rotation speed and variable pump pressure are verified in the experimental bench.Results show that algorithm effect of MNN PID is stable and MNN PID can meet the adjusting requirement of control parameters.展开更多
Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ...Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.展开更多
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica...In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
基金This project is supported by National Natural Science Foundation of China (No. 5880203).
文摘In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.
文摘Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.
基金National Nature Science Foundation of China (No.50575074)
文摘A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.
基金Supported by the National Natural Science Foundation of China(51305457)。
文摘To speedily regulate and precisely control a hydraulic power system in a unmanned walking platform(UWP),based on the brief analysis of digital PID and its shortcomings,dual control parameters in a hydraulic power system are given for the precision requirement,and a control strategy for dual relative control parameters in the dual loop PID is put forward,a load and throttle rotation-speed response model for variable pump and gasoline engine is provided according to a physical process,a simplified neural network structure PID is introduced,and formed mixed neural network PID(MNN PID)to control rotation speed of engine and pressure of variable pump,calculation using the back propagation(BP)algorithm and a self-adapted learning step is made,including a mathematic principle and a calculation flow scheme,the BP algorithm of neural network PID is trained and the control effect of system is simulated in Matlab environment,real control effects of engine rotation speed and variable pump pressure are verified in the experimental bench.Results show that algorithm effect of MNN PID is stable and MNN PID can meet the adjusting requirement of control parameters.
文摘Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.
文摘In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.