The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase Ⅰ on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous e...The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase Ⅰ on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the l-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeAC01), 1- aminocyclopropane-l-carboxylic acid oxidase 3 gene (LeAC03), EIN3-binding F-box 1 gene (LeEBF1), pathogenesis-related protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeAC01 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carded out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.展开更多
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate...Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infectioru The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful in fections, plant bacterial, oomycete, fun gal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense? The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to corn trol these diseases.展开更多
Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Take...Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Takeda G protein receptor 5(TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cholinergic receptor muscarinic 2(CHRM2).All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure.Because epigenetic regulation is critical for organisms to adapt to constant environmental changes,this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid re-ceptors.In addition,the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs.Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.展开更多
基金supported by National Natural Science Foundation of China(30471180)Nature Science Foundation of Chongqing City,China(8045,2004-56).
文摘The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase Ⅰ on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the l-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeAC01), 1- aminocyclopropane-l-carboxylic acid oxidase 3 gene (LeAC03), EIN3-binding F-box 1 gene (LeEBF1), pathogenesis-related protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeAC01 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carded out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.
基金The National Science Foundation (grant IOS-1758994 to Z.Q.F.)M.C.is supported by the Postdoctoral Workstation of Jiangsu Academy of Agricultural Sciences.
文摘Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infectioru The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful in fections, plant bacterial, oomycete, fun gal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense? The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to corn trol these diseases.
基金This study was supported by grants funded by the USA National Institutes of Health(NIH)U01CA179582 and R01 CA222490.
文摘Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Takeda G protein receptor 5(TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cholinergic receptor muscarinic 2(CHRM2).All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure.Because epigenetic regulation is critical for organisms to adapt to constant environmental changes,this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid re-ceptors.In addition,the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs.Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.