L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the ne...In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.展开更多
Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is pr...Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the p...Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.展开更多
For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection int...For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.展开更多
Based on the real time measurement of the width of coal flow, the method for measuring the width and the relative position of coal flow on a conveyor-belt by image processing was presented. A feeding control system of...Based on the real time measurement of the width of coal flow, the method for measuring the width and the relative position of coal flow on a conveyor-belt by image processing was presented. A feeding control system of conveyor-belt was proposed using a fuzzy controller. This control system consists of CCD camera, universal image sampling system, control network and executor. The result shows that the algorithm used in the image processing is simple and efficient, and the measuring error of width is less than 4%.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnai...Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnaire has been employed to executive and technical managers of manufacturing industries of various size and specialism across the country. Stratified random sample method by region was used to select sample industries for the study. The samples used for this study are industries mainly from Oromiya, Addis Ababa, Tigray, Amara, SNNP and Diredawa regions proportional to their size of the available industries. Methods: Exploratory method and descriptive statistics was used for data analysis. Available documents and reports related to quality control policy of the selected companies were investigated. Results and Discussions: The number of manufacturing industries involved in this study was 44. Of the sampled manufacturing industries about 60% are from Oromiya and Addis Ababa regions. It has been reported that 100% of the respondents said that the importance of quality control tools is very important to their organizations’ productivity and quality improvement (Figure 3). Quality control professionals were also asked the extent to which quality control system is working in their industry and majority of the respondents (45%) have indicated that quality control system is working to some extent in their respective industries (Figure 18). Conclusions and Recommendations: Most of the quality department of the industries did not fully recognize the importance of statistical process control as quality control tools. This is mainly due to lack of awareness and motivation of the top managements, shortage of man power in the area, and others together would make it difficult to apply quality control tools in their organization. In general, the industries in Ethiopia are deficient in vigor and found to be stagnant hence less exposed to a highly competitive market and don’t adopt the latest quality control techniques in order to gain knowledge about systems to improve quality and operational performance. We conclude that quality management system has to be established as an independent entity with a real power and hence the quality control department which is responsible for quality can make an irreversible decision with respect to quality of any given product. Moreover, the concerned bodies (government and ministry of industries) should give attention and work together with universities to ensure how these statistical process control techniques could be incorporated in a curriculum of the universities at higher levels in degree and masters programs. Furthermore, different trainings which could improve quality and efficiency of their respective management system should be given as short and long term to the employees including top and middle managers found in various industries relevant to their process.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
Based on the idea that intentions have different penetrability to perception and thought, four Stroop-like tasks, AA, AW, WA, and WW are used. Event-related brain potentials are recorded as participants completed thes...Based on the idea that intentions have different penetrability to perception and thought, four Stroop-like tasks, AA, AW, WA, and WW are used. Event-related brain potentials are recorded as participants completed these tasks, and standardized low resolution brain electromagnetic tomography (sLORETA) is used to localize the sources at specific time points. These results show that there is an interference effect in the AA and WA tasks, but not in the AW or WW tasks. The activated brain areas related to the interference effect in the AA task are the PFC (prefrontal cortex) and ACC (anterior cingulated cortex), and PFC aetivation takes place prior to ACC activation, but only in WA task. Combined with previous results, a new neural mechanism of cognitive control is proposed.展开更多
Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In ...Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In this paper, authors consider a machine scheduling problem with controllable processing times. In the first part of this paper, a special case where the processing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n 2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case. An effective heuristic to the general problem will be presented.展开更多
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
基金supported by the National Natural Science Foundation of China(61771034).
文摘In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(15510722100,16111106300)Shanghai Municipal Education Commission(14ZZ088)
文摘Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
文摘Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.
文摘For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.
文摘Based on the real time measurement of the width of coal flow, the method for measuring the width and the relative position of coal flow on a conveyor-belt by image processing was presented. A feeding control system of conveyor-belt was proposed using a fuzzy controller. This control system consists of CCD camera, universal image sampling system, control network and executor. The result shows that the algorithm used in the image processing is simple and efficient, and the measuring error of width is less than 4%.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
文摘Introduction: The present work was devoted to assess the awareness and usage of quality control tools with the emphasis on statistical process control in Ethiopian manufacturing industries. Semi structured questionnaire has been employed to executive and technical managers of manufacturing industries of various size and specialism across the country. Stratified random sample method by region was used to select sample industries for the study. The samples used for this study are industries mainly from Oromiya, Addis Ababa, Tigray, Amara, SNNP and Diredawa regions proportional to their size of the available industries. Methods: Exploratory method and descriptive statistics was used for data analysis. Available documents and reports related to quality control policy of the selected companies were investigated. Results and Discussions: The number of manufacturing industries involved in this study was 44. Of the sampled manufacturing industries about 60% are from Oromiya and Addis Ababa regions. It has been reported that 100% of the respondents said that the importance of quality control tools is very important to their organizations’ productivity and quality improvement (Figure 3). Quality control professionals were also asked the extent to which quality control system is working in their industry and majority of the respondents (45%) have indicated that quality control system is working to some extent in their respective industries (Figure 18). Conclusions and Recommendations: Most of the quality department of the industries did not fully recognize the importance of statistical process control as quality control tools. This is mainly due to lack of awareness and motivation of the top managements, shortage of man power in the area, and others together would make it difficult to apply quality control tools in their organization. In general, the industries in Ethiopia are deficient in vigor and found to be stagnant hence less exposed to a highly competitive market and don’t adopt the latest quality control techniques in order to gain knowledge about systems to improve quality and operational performance. We conclude that quality management system has to be established as an independent entity with a real power and hence the quality control department which is responsible for quality can make an irreversible decision with respect to quality of any given product. Moreover, the concerned bodies (government and ministry of industries) should give attention and work together with universities to ensure how these statistical process control techniques could be incorporated in a curriculum of the universities at higher levels in degree and masters programs. Furthermore, different trainings which could improve quality and efficiency of their respective management system should be given as short and long term to the employees including top and middle managers found in various industries relevant to their process.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.
基金supported by the National Natural Science Foundation of China under Grant No. 30700226the China Postdoctoral Science Foundation Grant No. 20080431271
文摘Based on the idea that intentions have different penetrability to perception and thought, four Stroop-like tasks, AA, AW, WA, and WW are used. Event-related brain potentials are recorded as participants completed these tasks, and standardized low resolution brain electromagnetic tomography (sLORETA) is used to localize the sources at specific time points. These results show that there is an interference effect in the AA and WA tasks, but not in the AW or WW tasks. The activated brain areas related to the interference effect in the AA task are the PFC (prefrontal cortex) and ACC (anterior cingulated cortex), and PFC aetivation takes place prior to ACC activation, but only in WA task. Combined with previous results, a new neural mechanism of cognitive control is proposed.
文摘Abstract Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by reallocating resources. In this paper, authors consider a machine scheduling problem with controllable processing times. In the first part of this paper, a special case where the processing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n 2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case. An effective heuristic to the general problem will be presented.