期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Joint Multi-Domain Channel Estimation Based on Sparse Bayesian Learning for OTFS System 被引量:11
1
作者 Yong Liao Xue Li 《China Communications》 SCIE CSCD 2023年第1期14-23,共10页
Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next gene... Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm. 展开更多
关键词 OTFS sparse bayesian learning basis expansion model channel estimation
在线阅读 下载PDF
Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning 被引量:3
2
作者 Shuo Zheng Yu-Xin Zhu +3 位作者 Dian-Qing Li Zi-Jun Cao Qin-Xuan Deng Kok-Kwang Phoon 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期425-439,共15页
Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse mult... Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse multivariate data obtained from geotechnical site investigation,it is impossible to identify outliers with certainty due to the distortion of statistics of geotechnical parameters caused by outliers and their associated statistical uncertainty resulted from data sparsity.This paper develops a probabilistic outlier detection method for sparse multivariate data obtained from geotechnical site investigation.The proposed approach quantifies the outlying probability of each data instance based on Mahalanobis distance and determines outliers as those data instances with outlying probabilities greater than 0.5.It tackles the distortion issue of statistics estimated from the dataset with outliers by a re-sampling technique and accounts,rationally,for the statistical uncertainty by Bayesian machine learning.Moreover,the proposed approach also suggests an exclusive method to determine outlying components of each outlier.The proposed approach is illustrated and verified using simulated and real-life dataset.It showed that the proposed approach properly identifies outliers among sparse multivariate data and their corresponding outlying components in a probabilistic manner.It can significantly reduce the masking effect(i.e.,missing some actual outliers due to the distortion of statistics by the outliers and statistical uncertainty).It also found that outliers among sparse multivariate data instances affect significantly the construction of multivariate distribution of geotechnical parameters for uncertainty quantification.This emphasizes the necessity of data cleaning process(e.g.,outlier detection)for uncertainty quantification based on geoscience data. 展开更多
关键词 Outlier detection Site investigation sparse multivariate data Mahalanobis distance Resampling by half-means bayesian machine learning
在线阅读 下载PDF
Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior 被引量:2
3
作者 Chengyao Ruan Zaichen Zhang +3 位作者 Hao Jiang Jian Dang Liang Wu Hongming Zhang 《China Communications》 SCIE CSCD 2023年第5期57-69,共13页
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ... Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices. 展开更多
关键词 sparse bayesian learning approximate message passing compressed sensing expectation propagation
在线阅读 下载PDF
DOA estimation based on multi-frequency joint sparse Bayesian learning for passive radar 被引量:1
4
作者 WEN Jinfang YI Jianxin +2 位作者 WAN Xianrong GONG Ziping SHEN Ji 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1052-1063,共12页
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ... This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar. 展开更多
关键词 multi-frequency passive radar DOA estimation sparse bayesian learning small snapshot low signal-to-noise ratio(SNR)
在线阅读 下载PDF
EARLY CATARACT DETECTION BY DYNAMIC LIGHT SCATTERING WITH SPARSE BAYESIAN LEARNING
5
作者 SU-LONG NYEO RAFAT R.ANSAR 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第3期303-313,共11页
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco... Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies. 展开更多
关键词 CATARACT dynamic light scattering diagnostic algorithm sparse bayesian learning(SBL).
在线阅读 下载PDF
Sparse Bayesian learning in ISAR tomography imaging
6
作者 苏伍各 王宏强 +2 位作者 邓彬 王瑞君 秦玉亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1790-1800,共11页
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a... Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms. 展开更多
关键词 inverse synthetic aperture radar (ISAR) TOMOGRAPHY computer aided tomography (CT) imaging sparse recover compress sensing (CS) sparse bayesian leaming (SBL)
在线阅读 下载PDF
Learning Bayesian networks by constrained Bayesian estimation 被引量:3
7
作者 GAO Xiaoguang YANG Yu GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期511-524,共14页
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil... Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy. 展开更多
关键词 bayesian networks (BNs) PARAMETER learning CONSTRAINTS sparse data
在线阅读 下载PDF
Sparse Bayesian Learning Based Off-Grid Estimation of OTFS Channels with Doppler Squint
8
作者 Xuehan Wang Xu Shi Jintao Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第6期1821-1828,共8页
Orthogonal Time Frequency Space(OTFS)modulation has exhibited significant potential to further promote the performance of future wireless communication networks especially in high-mobility scenarios.In practical OTFS ... Orthogonal Time Frequency Space(OTFS)modulation has exhibited significant potential to further promote the performance of future wireless communication networks especially in high-mobility scenarios.In practical OTFS systems,the subcarrier-dependent Doppler shift which is referred to as the Doppler Squint Effect(DSE)plays an important role due to the assistance of time-frequency modulation.Unfortunately,most existing works on OTFS channel estimation ignore DSE,which leads to severe performance degradation.In this letter,OTFS systems taking DSE into consideration are investigated.Inspired by the input-output analysis with DSE and the embedded pilot pattern,the sparse Bayesian learning based parameter estimation scheme is adopted to recover the delay-Doppler channel.Simulation results verify the excellent performance of the proposed off-grid estimation approach considering DSE. 展开更多
关键词 orthogonal time frequency space modulation Doppler squint effect channel estimation sparse bayesian learning
原文传递
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
9
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse bayesian learning fast bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
在线阅读 下载PDF
Online identification of time-varying dynamical systems for industrial robots based on sparse Bayesian learning 被引量:5
10
作者 SHEN Tan DONG YunLong +1 位作者 HE DingXin YUAN Ye 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期386-395,共10页
Nowadays, industrial robots have been widely used in manufacturing, healthcare, packaging, and more. Choosing robots in these applications mainly attributes to their repeatability and precision. However, prolonged and... Nowadays, industrial robots have been widely used in manufacturing, healthcare, packaging, and more. Choosing robots in these applications mainly attributes to their repeatability and precision. However, prolonged and loaded operations can deteriorate the accuracy and efficiency of industrial robots due to the unavoidable accumulated kinematical and dynamical errors. This paper resolves these aforementioned issues by proposing an online time-varying sparse Bayesian learning(SBL) method to identify dynamical systems of robots in real-time. The identification of dynamical systems for industrial robots is cast as a sparse linear regression problem. By constructing the dictionary matrix, the parameters of the robot dynamics are effectively estimated via a re-weighted1-minimization algorithm. Online recursive methods are integrated into SBL to achieve real-time system identification. By including sparsity and promoting online learning, the proposed method can handle time-varying dynamical systems and therefore improve operational stability and accuracy. Experimental results on both simulated and real selective compliance assembly robot arm(SCARA) robots have demonstrated the effectiveness of the proposed method for industrial robots. 展开更多
关键词 industrial robots sparse bayesian learning online identification
原文传递
On fast estimation of direction of arrival for underwater acoustic target based on sparse Bayesian learning 被引量:10
11
作者 WANG Biao ZHU Zhihui DAI Yuewei 《Chinese Journal of Acoustics》 CSCD 2017年第1期102-112,共11页
The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing s... The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing speed. To solve this problem, a fast underwater acoustic target direction of arrival estimation was proposed. Analyzing the model characteristics of block-sparse Bayesian learning framework for DOA estimation, an algorithm was proposed to obtain the value of core hyper-parameter through MacKay's fixed-point method to estimate the DOA. By this process, it will spend less time for computation and provide more superior recovery performance than TMSBL algorithm. Simulation results verified the feasibility and effectiveness of the proposed algorithm. 展开更多
关键词 On fast estimation of direction of arrival for underwater acoustic target based on sparse bayesian learning DOA
原文传递
DOA Estimation Based on Root Sparse Bayesian Learning Under Gain and Phase Error 被引量:2
12
作者 Dingke Yu Xin Wang +4 位作者 Wenwei Fang Zixian Ma Bing Lan Chunyi Song Zhiwei Xu 《Journal of Communications and Information Networks》 EI CSCD 2022年第2期202-213,共12页
The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this pa... The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this paper,a new root sparse Bayesian learning based DOA estimation method robust to gain-phase error is proposed,which dynamically adjusts the grid angle under coarse grid spacing to compensate the off-grid error and applies the expectation maximization(EM)method to solve the respective iterative formula-based on the prior distribution of each parameter.Simulation results verify that the proposed method reduces the computational complexity through coarse grid sampling while maintaining a reasonable accuracy under gain and phase errors,as compared to the existing methods. 展开更多
关键词 direction of arrival estimation gain-phase error root sparse bayesian learning off-grid error
原文传递
基于压缩感知的波束域反卷积波束形成算法
13
作者 黄健丽 王域 +2 位作者 宫在晓 汪俊 王海斌 《声学学报》 北大核心 2025年第1期97-108,共12页
反卷积波束形成可有效抑制旁瓣、提高目标探测的方位分辨力,传统反卷积波束形成算法大多要求阵列指向性函数满足移不变性,只适用于直线阵、圆阵等特定阵列;传统方法通常对波束强度进行处理,不适用于处理相干信号。为此,提出了一种基于... 反卷积波束形成可有效抑制旁瓣、提高目标探测的方位分辨力,传统反卷积波束形成算法大多要求阵列指向性函数满足移不变性,只适用于直线阵、圆阵等特定阵列;传统方法通常对波束强度进行处理,不适用于处理相干信号。为此,提出了一种基于压缩感知的适用于任意阵列的波束域反卷积波束形成方法,该方法首先通过常规波束形成获取若干复数域波束输出,再将稀疏贝叶斯学习(SBL)重构算法应用于波束域模型进行复数域波束输出的反卷积,从而实现目标检测和波达方向估计。所提方法通过控制常规波束形成输出波束数,可有效降低算法的计算复杂度,且在处理相干信号时同样适用,方位分辨性能优于常规反卷积算法。仿真与海试数据处理结果表明,所提算法的方位分辨性能与传统阵元域SBL波束形成算法相当,且均优于常规波束形成和最小方差无失真响应方法;在应用于短密阵等阵列条件下,所涉及常规波束形成波束数明显小于阵元数时,所提算法的计算复杂度显著低于传统阵元域SBL波束形成算法。 展开更多
关键词 波达方向 高分辨力 反卷积波束形成 压缩感知 稀疏贝叶斯学习
在线阅读 下载PDF
SBL驱动的可解释性大坝变形区间预测模型
14
作者 陈斯煜 顾冲时 +2 位作者 盛金保 谷艳昌 林潮宁 《水力发电学报》 北大核心 2025年第1期18-29,共12页
变形是反映大坝结构性态的重要效应量。针对现有大坝变形预测中不确定性量化和模型可解释性欠佳的问题,本文综合考虑数据噪声和模型参数不确定性,提出了稀疏贝叶斯学习(SBL)驱动的大坝变形区间预测模型。借助并行Rao-3算法和交叉验证策... 变形是反映大坝结构性态的重要效应量。针对现有大坝变形预测中不确定性量化和模型可解释性欠佳的问题,本文综合考虑数据噪声和模型参数不确定性,提出了稀疏贝叶斯学习(SBL)驱动的大坝变形区间预测模型。借助并行Rao-3算法和交叉验证策略对核函数参数进行自适应优化,建立了经参数优化的稀疏贝叶斯学习模型,能够准确表征库水位、气温和时效变量与大坝变形的非线性映射关系。进一步,将全局敏感度分析与预测模型相结合,计算了大坝变形影响变量的特征重要度,剖析并解释了特征变量对变形预测的影响。以第16届国际大坝数值分析基准研讨会中的EDF混凝土拱坝为研究案例进行分析,研究结果表明:与多元线性回归、RBFN模型和GPR模型相比,所提出的预测模型具有较高的点预测和区间预测精度,并兼有良好的可解释性。 展开更多
关键词 大坝变形预测 区间预测 安全监控 稀疏贝叶斯学习 全局敏感度分析 可解释性
在线阅读 下载PDF
稀疏贝叶斯学习远近场混合源离网定位算法
15
作者 李晨牧 邱龙皓 +2 位作者 王晋晋 梁国龙 沈同圣 《声学学报》 北大核心 2025年第2期456-474,共19页
水下远近场混合源定位算法的定位精度往往受到采样网格的限制,粗糙的网格在降低精度的同时可能导致近场声信号功率泄露至远场,恶化远场测向结果;细密的网格使算法计算复杂度剧增,影响算法的计算效率与实用性。为此提出了一种稀疏贝叶斯... 水下远近场混合源定位算法的定位精度往往受到采样网格的限制,粗糙的网格在降低精度的同时可能导致近场声信号功率泄露至远场,恶化远场测向结果;细密的网格使算法计算复杂度剧增,影响算法的计算效率与实用性。为此提出了一种稀疏贝叶斯学习远近场混合源离网定位算法。该算法通过建立水下声信号远近场离网模型,利用稀疏贝叶斯学习过程实现离网误差的估计与补偿,从而突破网格限制,获得更高精度的定位结果。在此基础上,还提出了一种提高计算效率的网格演化方法,该方法根据离网误差估计结果引导网格点在声源位置附近细化,实现了网格点有侧重、非均匀地覆盖感兴趣空域,有效降低了算法计算复杂度。仿真和湖试数据处理结果表明,与现有稀疏贝叶斯学习远近场混合源定位算法相比,所提算法具有更高的定位精度、分辨率和计算效率。 展开更多
关键词 声源定位 稀疏贝叶斯学习 离网模型 网格演化
在线阅读 下载PDF
基于非均匀稀疏贝叶斯学习的近场源定位
16
作者 李一 傅海军 戴继生 《数据采集与处理》 北大核心 2025年第1期187-196,共10页
近场源的阵列流型包含角度和距离参数,两者相互耦合,难以分离。现有方法一般采用近似解耦模型,分步估计出角度和距离参数。然而,在近似解耦过程中,不可避免地引入了系统模型误差,导致定位性能严重下降。为了应对上述挑战,提出了一种基... 近场源的阵列流型包含角度和距离参数,两者相互耦合,难以分离。现有方法一般采用近似解耦模型,分步估计出角度和距离参数。然而,在近似解耦过程中,不可避免地引入了系统模型误差,导致定位性能严重下降。为了应对上述挑战,提出了一种基于非均匀网格的稀疏表示近场源定位方法,将复杂的近场源定位问题直接建模成一个较低维度的稀疏信号恢复问题,并利用稀疏贝叶斯学习(Sparse Bayesian learning, SBL)方法实现对稀疏信号的自适应恢复,从而避免引入近似误差,显著提高了参数估计的准确性。所提方法中的非均匀网格仅含有较少的网格点,极大降低了计算复杂度;各网格点之间的角度和距离均不相同,有效克服了字典矩阵中相邻基之间相关性高的缺陷;额外引入网格优化技术,进一步解决了粗糙网格可能导致的失配问题。仿真结果证实了所提方法的优越性。 展开更多
关键词 近场源定位 稀疏表示 稀疏信号恢复 稀疏贝叶斯学习 网格细化
在线阅读 下载PDF
单矢量水听器的改进稀疏贝叶斯学习方位估计算法
17
作者 李雄辉 梁国龙 +1 位作者 沈同圣 罗再磊 《声学学报》 北大核心 2025年第1期77-85,共9页
复数稀疏贝叶斯学习(SBL)算法计算量大,为此将声能流与稀疏贝叶斯学习算法相结合,提出了基于单矢量水听器的声能流稀疏贝叶斯学习(SI-SBL)方位估计算法。该方法采用声能流取代声压振速信息作为观测量,将参数估计过程从复数域运算转化为... 复数稀疏贝叶斯学习(SBL)算法计算量大,为此将声能流与稀疏贝叶斯学习算法相结合,提出了基于单矢量水听器的声能流稀疏贝叶斯学习(SI-SBL)方位估计算法。该方法采用声能流取代声压振速信息作为观测量,将参数估计过程从复数域运算转化为实数域运算,同时利用声压通道噪声与振速噪声不相关的特点实现了噪声抑制,进一步加快了稀疏贝叶斯学习算法收敛速度,使SI-SBL算法获得相比以声压振速通道作为观测量的SBL算法更高的估计精度和尖锐的谱峰。仿真数据表明,单矢量水听器SI-SBL算法相比于SBL算法具有更高的精度和更快的计算速度。实验数据验证,SI-SBL算法相比SBL精度提高了25%,运算速度提高了8倍,证明了本文所提SI-SBL算法应用于水平方位估计的可行性。 展开更多
关键词 矢量水听器 方位估计 稀疏贝叶斯学习 声能流
在线阅读 下载PDF
基于降采样的光谱基线校正方法
18
作者 胡颖惠 曹政 +1 位作者 傅海军 戴继生 《光谱学与光谱分析》 北大核心 2025年第2期351-357,共7页
基线漂移现象普遍存在于光谱数据的采集过程中,基线校正是对抗基线漂移干扰的重要手段。基于稀疏表示的基线校正方法能取得较好的光谱预处理目标,但在应用于高维度光谱基线校正时,计算复杂度极大,实效性差;且在纯光谱稀疏结构上的利用... 基线漂移现象普遍存在于光谱数据的采集过程中,基线校正是对抗基线漂移干扰的重要手段。基于稀疏表示的基线校正方法能取得较好的光谱预处理目标,但在应用于高维度光谱基线校正时,计算复杂度极大,实效性差;且在纯光谱稀疏结构上的利用度不足,性能有待进一步提升。为充分利用稀疏结构并显著降低计算复杂度,提出了一种基于降采样的光谱基线校正方法。通过降采样策略构造一个多快拍并附加相关矩阵的稀疏恢复模型,在降低光谱数据维度的同时,确保各降采样快拍具有共同稀疏性和空间相关性。随后,在变分贝叶斯推理(VBI)框架中引入独立向量分解模式,利用向量乘积的数学变换技巧,自适应解耦多快拍间的空间相关性,进而分别推断出各快拍对应的贝叶斯最优稀疏解。此外,采用网格细化技术处理离网间隙,进一步提升了基线校正性能。模拟和真实数据集上的实验结果验证了所提方法的优越性。 展开更多
关键词 基线校正 光谱分析 降采样 稀疏贝叶斯学习
在线阅读 下载PDF
改进的快速稀疏贝叶斯学习水声信道估计算法
19
作者 贾书阳 邹司宸 +2 位作者 刘宝衡 张小川 笪良龙 《国防科技大学学报》 北大核心 2025年第2期219-226,共8页
为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估... 为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估计。特别是在低信噪比情况下,通过阈值去噪和离散傅里叶变换降噪,可以进一步提升算法的性能。仿真和海试结果表明,所提的IFM-SBL信道估计后的输出误码率与基于期望最大化的稀疏贝叶斯学习(sparse Bayesian learning based on expectation maximization, EM-SBL)算法相似,且验证了算法在低信噪比和快慢时变信道中都具有良好的鲁棒性。在运行速度方面,FM-SBL算法与IFM-SBL算法比EM-SBL算法提高了约90%,大大减少了信道估计时间。 展开更多
关键词 时变水声信道 稀疏贝叶斯学习 鲁棒性 复杂度
在线阅读 下载PDF
基于广义模式耦合稀疏Bayesian学习的1-Bit压缩感知
20
作者 司菁菁 韩亚男 +1 位作者 张磊 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2700-2707,共8页
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提... 在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。 展开更多
关键词 1-Bit压缩感知 广义稀疏bayesian学习 模式耦合 自适应阈值
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部