期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
1
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(sdae) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
在线阅读 下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
2
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测 被引量:1
3
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
在线阅读 下载PDF
基于SDAE的终端区气象场景模式识别方法
4
作者 杨新湦 罗秋晴 张召悦 《河南科技大学学报(自然科学版)》 北大核心 2024年第2期96-104,M0008,共10页
气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场... 气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场景的模式识别。以天津滨海国际机场2022年气象观测数据为例,基于SDAE与欧氏距离、汉明距离、曼哈顿距离等传统相似性距离度量方法,分别使用K-medoids与FCM两种聚类方法进行验证。结果表明:基于SDAE的相似性度量在K-medoids与FCM聚类中均表现最优,与其他相似性度量相比差异率分别达到22.4%,12%,17.7%与24.8%,10.7%,11.8%,且运算时间最短,证明了基于SDAE的度量、聚类效果最优,最终识别出8个气象场景,各场景分类清晰明确。 展开更多
关键词 气象特征 堆叠降噪自编码 K-medoids FCM
在线阅读 下载PDF
Fault prediction of combine harvesters based on stacked denoising autoencoders
5
作者 Zhaomei Qiu Gaoxiang Shi +3 位作者 Bo Zhao Xin Jin Liming Zhou Tengfei Ma 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第2期189-196,共8页
Accurate fault prediction is essential to ensure the safety and reliability of combine harvester operation.In this study,a combine harvester fault prediction method based on a combination of stacked denoising autoenco... Accurate fault prediction is essential to ensure the safety and reliability of combine harvester operation.In this study,a combine harvester fault prediction method based on a combination of stacked denoising autoencoders(SDAE)and multi-classification support vector machines(SVM)is proposed to predict combine harvester faults by extracting operational features of key combine components.In general,SDAE contains autoencoders and uses a deep network architecture to learn complex non-linear input-output relationships in a hierarchical manner.Selected features are fed into the SDAE network,deep-level features of the input parameters are extracted by SDAE,and an SVM classifier is then added to its top layer to achieve combine harvester fault prediction.The experimental results show that the method can achieve accurate and efficient combine harvester fault prediction.In particular,the experiments used Gaussian noise with a distribution center of 0.05 to corrupt the test data samples obtained by random sampling of the whole population,and the results showed that the prediction accuracy of the method was 95.31%,which has better robustness and generalization ability compared to SVM(77.03%),BP(74.61%),and SAE(90.86%). 展开更多
关键词 fault prediction combine harvester stacked denoising autoencoders support vector machines
原文传递
基于SDAE特征表示的协同主题回归推荐模型 被引量:3
6
作者 谢国民 张婷婷 +2 位作者 刘明 屠乃威 刘志邦 《计算机工程与科学》 CSCD 北大核心 2019年第5期924-932,共9页
为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的... 为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的隐表示和解码过程获得的输入近似表示为网络的双输出量,最小化用户辅助信息和近似表示的差值来确定最优隐表示。模型融合用户-项目评分矩阵(冷启动条件无评分)、项目内容信息和用户辅助信息实现用户对未评分项目的评分预测,并在LastFM、Book Crossing和MovieLens数据集上从推荐准确度、新颖性和用户冷启动条件下的推荐效果等3方面对SDAE-CTR模型和CTR模型进行比较。结果表明,SDAE-CTR模型在冷启动或非冷启动的条件下,推荐效果都要优于CTR模型的,虽然新颖性较CTR模型稍微逊色一些,但理论上在合理的范围内,总体上SDAE-CTR模型表现较优。 展开更多
关键词 推荐系统 协同主题回归模型 堆叠去噪自编码器 混合推荐
在线阅读 下载PDF
基于投资者情绪和栈式自编码器的股价预测模型
7
作者 蔡俊杰 王爱银 《哈尔滨商业大学学报(自然科学版)》 2025年第1期120-128,共9页
为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI... 为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI)进行了研究,实验结果表明,所提方法的预测性能优于其他对比方法,其平均绝对误差(MAPE)、R^(2)和方向准确度(DA)值分别达到1.12%、0.92和84.93%,具有准确度较高的预测能力. 展开更多
关键词 股价预测 投资者情绪 栈式去噪自编码器 长短期记忆网络 非线性组合
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
8
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于SDAE特征提取的含风电电网可用输电能力计算 被引量:16
9
作者 闫炯程 李常刚 刘玉田 《电力系统自动化》 EI CSCD 北大核心 2019年第1期32-39,共8页
风力发电的不确定性显著增加了电力系统可用输电能力(ATC)计算的难度。基于点估计的Gram-Charlier级数展开理论和深度学习技术,提出了一种计及越限概率要求的ATC快速计算方法,考虑的约束类型包括静态安全、静态电压稳定和暂态稳定约束... 风力发电的不确定性显著增加了电力系统可用输电能力(ATC)计算的难度。基于点估计的Gram-Charlier级数展开理论和深度学习技术,提出了一种计及越限概率要求的ATC快速计算方法,考虑的约束类型包括静态安全、静态电压稳定和暂态稳定约束。假定风电出力概率分布已知,结合两点估计法和Gram-Charlier级数展开,通过两个确定性场景的最大输电能力(TTC)计算结果逼近TTC的累积分布函数。为了快速、准确地获得确定性场景的TTC,利用堆叠降噪自动编码器(SDAE)建立了TTC计算的深度学习模型。获得TTC的累积分布函数后,将断面功率超过TTC的概率定义为越限概率,推导了给定越限概率要求下ATC计算的表达式。实际电网仿真结果表明,所提方法能够有效计及多类安全稳定约束,快速、准确计算不同越限概率要求下的ATC。 展开更多
关键词 可用输电能力 风电功率 深度学习 堆叠降噪自动编码器 Gram-Charlier级数
在线阅读 下载PDF
面向网络入侵检测的GAN-SDAE-RF模型研究 被引量:15
10
作者 安磊 韩忠华 +1 位作者 林硕 尚文利 《计算机工程与应用》 CSCD 北大核心 2021年第21期155-164,共10页
针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的... 针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的问题,引入生成式对抗网络(GAN)和栈式降噪自编码器(SDAE)对随机森林算法(RF)进行改进。将罕见攻击类数据集输入GAN神经网络中,生成新的攻击类样本,改善网络入侵数据在样本集中不均衡分布的情况,通过堆叠深层的SDAE逐层抽取网络数据的分布规则,并结合各个编码层的系数惩罚和重构误差,来确定高维数据中与入侵行为相关的特征,基于降维后的特征数据构建森林决策树。采用UNSW-NB15数据集的实验结果表明,与SVM、KNN、CNN、LSTM、DBN方法相比,GAN-SDAE-RF整体检测准确率平均提高了9.39%、误报率和漏报率平均降低了9%和15.24%以及在少数类Analysis、Shellcode、Backdoor、Worms上检测率分别提高了26.8%、27.98%、27.85%、39.97%。 展开更多
关键词 深度学习 生成式对抗网络 栈式降噪自编码器 随机森林算法
在线阅读 下载PDF
基于SDAE-BP的联合收割机作业故障监测 被引量:15
11
作者 习晨博 杨光友 +3 位作者 刘浪 刘景 陈学海 马志艳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第17期46-53,共8页
为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以... 为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。 展开更多
关键词 农业机械 故障诊断 试验 联合收割机 sdae-BP模型 深层次特征 BP神经网络
在线阅读 下载PDF
基于SDAE和GRUNN的行星齿轮故障识别 被引量:7
12
作者 于军 高莲莲 +2 位作者 于广滨 刘可 郭振宇 《振动与冲击》 EI CSCD 北大核心 2021年第2期156-163,共8页
针对噪声环境和时变转速工况下行星齿轮故障识别率低的问题,提出一种基于堆叠消噪自动编码器(SDAE)和门控循环单元神经网络(GRUNN)的行星齿轮故障识别方法。构建基于SDAE和GRUNN的混合模型,处理前后关联的时序数据,自动地从含噪样本中... 针对噪声环境和时变转速工况下行星齿轮故障识别率低的问题,提出一种基于堆叠消噪自动编码器(SDAE)和门控循环单元神经网络(GRUNN)的行星齿轮故障识别方法。构建基于SDAE和GRUNN的混合模型,处理前后关联的时序数据,自动地从含噪样本中提取鲁棒故障特征;将行星齿轮故障诊断的训练样本看作该混合模型的输入数据,采用Adam优化算法和dropout技术训练该混合模型,实现多参数的优化,防止过拟合现象的发生;根据训练后的混合模型,利用softmax分类器识别待诊样本中行星齿轮的状态。通过行星齿轮的故障识别实验验证该方法的有效性,实验结果表明该方法具有较强的抗噪能力和时变转速适应能力。 展开更多
关键词 行星齿轮 故障识别 噪声环境 时变转速 堆叠消噪自动编码器(sdae) 门控循环单元神经网络(GRUNN)
在线阅读 下载PDF
基于粒子群算法和SDAE的采棉头故障诊断研究 被引量:3
13
作者 王皓 韩科立 +3 位作者 韩树杰 郝付平 韩增德 赵亚宁 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期164-172,共9页
针对采棉头故障诊断和故障预警缺失的问题,提出基于粒子群优化算法(PSO)优化堆叠降噪自编码器(SDAE)的采棉头故障诊断方法。将采棉滚筒转速与采棉头输入转速比和采棉头液压驱动压力作为输入,利用PSO算法对SDAE网络的超参数进行自适应选... 针对采棉头故障诊断和故障预警缺失的问题,提出基于粒子群优化算法(PSO)优化堆叠降噪自编码器(SDAE)的采棉头故障诊断方法。将采棉滚筒转速与采棉头输入转速比和采棉头液压驱动压力作为输入,利用PSO算法对SDAE网络的超参数进行自适应选取,确定网络结构,然后将预处理后的数据输入PSO-SDAE网络进行深度特征提取,经过前向传播和反向微调,得到采棉头故障诊断模型。通过采棉头堵塞故障模拟试验对算法进行验证,试验结果表明:PSO-SDAE网络诊断方法在特征有效提取、故障诊断准确率方面均优于SDAE网络、支持向量机(SVM)、反向传播神经网络(BPNN)以及深度置信网络(DBN),可用于采棉头故障诊断和故障预警。 展开更多
关键词 采棉头 故障诊断 堆叠降噪自编码器 粒子群算法
在线阅读 下载PDF
基于FFT-SDAE的地铁牵引电机轴承故障智能诊断 被引量:7
14
作者 李琛 徐彦伟 +1 位作者 颉潭成 赵朋飞 《现代制造工程》 CSCD 北大核心 2021年第11期155-161,共7页
针对地铁牵引电机轴承故障诊断中因工况复杂影响人工提取特征效果的问题,提出了一种基于快速傅里叶变换(Fast Fourier Transform,FFT)和堆叠降噪自编码器(Stacked Denoising Auto Encoder,SDAE)(FFT-SDAE)的地铁牵引电机轴承故障智能诊... 针对地铁牵引电机轴承故障诊断中因工况复杂影响人工提取特征效果的问题,提出了一种基于快速傅里叶变换(Fast Fourier Transform,FFT)和堆叠降噪自编码器(Stacked Denoising Auto Encoder,SDAE)(FFT-SDAE)的地铁牵引电机轴承故障智能诊断方法。首先,使用大量无标签数据预训练深度自编码器的特征提取能力,自适应提取轴承故障特征;然后,通过小样本有标签数据微调网络学习分类性能,搭建地铁牵引电机轴承的FFT-SDAE网络模型;最后,通过试验研究FFT-SDAE网络结构对轴承故障诊断准确率的影响,选取最佳网络参数。试验结果表明,在变转速和变载荷的情况下,所提方法可以很好地提取故障的深层特征,在使用工况较复杂的数据集时,所提方法的诊断准确率优于传统的故障诊断方法。 展开更多
关键词 堆叠降噪自编码器 变工况 地铁牵引电机轴承 故障智能诊断
在线阅读 下载PDF
基于GSP仿真和SDAE的航空发动机故障诊断 被引量:7
15
作者 车畅畅 王华伟 +1 位作者 倪晓梅 蔺瑞管 《航空发动机》 北大核心 2022年第1期13-18,共6页
为了深入研究航空发动机故障机理,提出基于航空燃气涡轮发动机性能仿真软件(GSP)和堆栈降噪自编码器(SDAE)的航空发动机故障诊断方法。通过GSP性能仿真方法模拟发动机在不同设计参数下的部件故障,并得到对应的运行状态参数;从每种故障... 为了深入研究航空发动机故障机理,提出基于航空燃气涡轮发动机性能仿真软件(GSP)和堆栈降噪自编码器(SDAE)的航空发动机故障诊断方法。通过GSP性能仿真方法模拟发动机在不同设计参数下的部件故障,并得到对应的运行状态参数;从每种故障类型下的长时间序列的状态参数中提取出向量化的曲线特征,构成故障样本;将故障样本带入SDAE模型中进行深度特征提取,经过前向传播和反向微调得到训练好的模型用于发动机故障诊断。结果表明:GSP能够通过参数更改来模拟微弱故障下的状态参数,从而构建多故障样本集;SDAE的重构误差和反向传播误差能够快速收敛到较小值,SDAE的故障诊断正确率为99.5%;与深度信念网络(DBN)、人工神经网络(ANN)以及经典机器学习方法支持向量机(SVM)相比,SDAE的故障分类正确率分别提高了0.8%、6.9%和10.1%。 展开更多
关键词 燃气涡轮发动机性能仿真软件 堆栈降噪自编码器 故障诊断 航空发动机
在线阅读 下载PDF
基于SDAE与RELM的EEG情感识别方法 被引量:2
16
作者 连卫芳 晁浩 刘永利 《计算机工程》 CAS CSCD 北大核心 2021年第9期75-83,共9页
针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初... 针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初始特征,使用SDAE进行无监督特征学习,提取初始特征的高层抽象表示。在网络的回归层,使用RELM进行情感分类。在DEAP数据集上的实验结果表明,与SDAE以及DT、KNN等传统基于机器学习的方法相比,该方法在实时性、准确性和泛化性能等方面均有明显提升。 展开更多
关键词 情感识别 脑电信号 情感特征 堆叠式降噪自动编码器 正则化极限学习机
在线阅读 下载PDF
基于OS-ELM和SDAE的Wi-Fi入侵检测方法 被引量:3
17
作者 刘明峰 侯路 +2 位作者 郭顺森 韩然 赵宇飞 《北京交通大学学报》 CAS CSCD 北大核心 2019年第5期87-93,101,共8页
为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数... 为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数据和正常数据进行平衡处理操作,使分类器的分类效果不受样本数据集中多数类样本的影响.然后使用栈式降噪自编码网络(SDAE)对平衡后的数据进行降维,消除无关或冗余特征降低检测建模规模,避免维度灾难.最后,在AWID数据集进行处理并输入到OS-ELM分类器中,结果表明:与其他基于浅层学习算法的检测方法相比,所提方法可有效地精简数据特征,降低了检测时间,同时在检测精度和误报率方面也体现出了更优性能. 展开更多
关键词 在线序列极限学习机 栈式降噪自编码网络 数据降维 入侵检测 WI-FI网络
在线阅读 下载PDF
基于集成SDAE和EEG的跨被试认知工作负荷识别 被引量:1
18
作者 郑展鹏 尹钟 《电子科技》 2021年第3期48-52,59,共6页
基于脑电信号评估人机系统中操作员认知工作负荷状态,可以有效阻止操作员工作性能下降。文中提出一种跨被试认知工作负荷分类器E-SDAE,以适应被试间脑电特征分布的变化。该算法包括高水平个性化特征抽象和决策融合两个模块。特征滤波器... 基于脑电信号评估人机系统中操作员认知工作负荷状态,可以有效阻止操作员工作性能下降。文中提出一种跨被试认知工作负荷分类器E-SDAE,以适应被试间脑电特征分布的变化。该算法包括高水平个性化特征抽象和决策融合两个模块。特征滤波器利用基学习器SDAE来抽象一组被试的脑电特征。监督分类器利用超限学习机的随机性来融合经Q-statistics处理后得到的滤波脑电抽象。任务1和任务2分别取得0.6353和0.6747的分类率,并且显著优于一些传统的认知工作负荷评估器。时间复杂度计算结果表明,E-SDAE的计算负荷对于高维脑电特征是可接受的。 展开更多
关键词 认知工作负荷 堆叠去噪自动编码器 超限学习机 人机系统 脑电图 集成学习
在线阅读 下载PDF
基于SDAE与CART联合智能算法的通信网络用户满意度分析方法 被引量:1
19
作者 李露 于忠义 李福昌 《信息通信技术》 2020年第2期12-18,共7页
论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通... 论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通过这种规则能更精准及时地预测到用户满意度的变化,以便运营商针对这种变化提前作出决策。论文所提方法能够挖掘特征间的深层关系,通过SDAE编码样本可以获得影响用户体验的隐含特征,及时发现用户对于网络贬损的真正痛点,为运营商网络建设和运行维护部门制定提升用户的网络感知策略提供依据,从而提升用户体验。 展开更多
关键词 栈式降噪自编码器 分类和回归决策树 人工智能 移动互联网 满意度
在线阅读 下载PDF
基于PID-SDAE控制器的多股簧螺距控制
20
作者 殷瑞 王时龙 +1 位作者 王四宝 杨文翰 《组合机床与自动化加工技术》 北大核心 2020年第11期86-90,共5页
弹簧螺距是多股螺旋弹簧(简称多股簧)的一项重要指标。针对当前多股簧生产过程中出现的螺距不均匀、产品试制成本高的问题,分析了多股簧生产过程中的成形机理,搭建了多股簧螺距伺服控制系统的硬件平台。结合PID控制和深度学习中的堆叠... 弹簧螺距是多股螺旋弹簧(简称多股簧)的一项重要指标。针对当前多股簧生产过程中出现的螺距不均匀、产品试制成本高的问题,分析了多股簧生产过程中的成形机理,搭建了多股簧螺距伺服控制系统的硬件平台。结合PID控制和深度学习中的堆叠降噪自编码器(SDAE),提出了PID-SDAE控制器。根据位移传感器反馈的送料位置的钢索位移与设定位置的偏差及其微分和积分值,通过控制牵引电机的转速,使钢索在送料位置与绕簧轴形成固定夹角,实现了对弹簧螺距的自适应在线控制。在典型工况下,对实际加工过程中不同控制方法的系统响应进行了对比。经实验验证,采用PID-SDAE控制器生产的多股簧螺距均匀,能满足使用要求。 展开更多
关键词 多股簧 螺距 堆叠降噪自编码器 鲁棒性
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部