期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CPEWS:Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation
1
作者 Xiaoyan Shao Jiaqi Han +2 位作者 Lingling Li Xuezhuan Zhao Jingjing Yan 《Computers, Materials & Continua》 2025年第4期595-617,共23页
The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods.End-to-end model designs have gaine... The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods.End-to-end model designs have gained significant attention for improving training efficiency.Most current algorithms rely on Convolutional Neural Networks(CNNs)for feature extraction.Although CNNs are proficient at capturing local features,they often struggle with global context,leading to incomplete and false Class Activation Mapping(CAM).To address these limitations,this work proposes a Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation(CPEWS)model,which improves feature extraction by utilizing the Vision Transformer(ViT).By incorporating its intermediate feature layers to preserve semantic information,this work introduces the Intermediate Supervised Module(ISM)to supervise the final layer’s output,reducing boundary ambiguity and mitigating issues related to incomplete activation.Additionally,the Contextual Prototype Module(CPM)generates class-specific prototypes,while the proposed Prototype Discrimination Loss and Superclass Suppression Loss guide the network’s training,(LPDL)(LSSL)effectively addressing false activation without the need for extra supervision.The CPEWS model proposed in this paper achieves state-of-the-art performance in end-to-end weakly supervised semantic segmentation without additional supervision.The validation set and test set Mean Intersection over Union(MIoU)of PASCAL VOC 2012 dataset achieved 69.8%and 72.6%,respectively.Compared with ToCo(pre trained weight ImageNet-1k),MIoU on the test set is 2.1%higher.In addition,MIoU reached 41.4%on the validation set of the MS COCO 2014 dataset. 展开更多
关键词 End-to-end weakly supervised semantic segmentation vision transformer contextual prototype class activation map
在线阅读 下载PDF
Erratum to: An advanced segmentation using area and boundary tracing technique in extraction of lungs region
2
作者 Kiran THAPALIYA Sang-Woong LEE +2 位作者 Jae-Young PYU Heon JEONG Goo-Rak KWON 《Journal of Central South University》 SCIE EI CAS 2014年第12期4762-4762,共1页
Erratum to:J.Cent.South Univ.(2014)21:3811-3820DOI:10.1007/s11771-014-2366-9The original version of this article unfortunately contained three mistakes.The mistakes are corrected as follows:1)The spelling of th... Erratum to:J.Cent.South Univ.(2014)21:3811-3820DOI:10.1007/s11771-014-2366-9The original version of this article unfortunately contained three mistakes.The mistakes are corrected as follows:1)The spelling of third author is incorrect.The correct name is Jae-Young PYUN.2)The information of corresponding author is incorrect.The correct information should be Goo-Rak KWON,Professor,PhD;Tel/Fax:+98-711-7264102;E-mail:grkwon@chosun.ac.kr 展开更多
关键词 segmentation corrected tracing contained lungs Heidelberg supervised Berlin updated incomplete
在线阅读 下载PDF
Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review 被引量:3
3
作者 Isaac Baffour Senkyire Zhe Liu 《International Journal of Automation and computing》 EI CSCD 2021年第6期887-914,共28页
Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdo... Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late;hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated. 展开更多
关键词 Abdominal organ supervised segmentation semi-supervised segmentation evaluation metrics image segmentation machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部