Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Rea...Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Reaumuria soongorica in the Alxa steppe desert,Northwest China.Plant samples were collected during May-September 2019.Using excavation methods,in situ measurements,and root scanning techniques,we analyzed the root distribution,topology,and branching patterns of R.soongorica across an age sequence of 7-51 a.Additionally,we investigated the allometric relationships of root collar diameter with total coarse root length,biomass,and topological parameters.The results showed that the roots of R.soongorica were predominantly concentrated in shallow soil layers(10-50 cm),with lateral root branching and biomass allocation increasing with shrub age.The root topology exhibited a herringbone-like structure,with average topological and modified topological indices of 0.89 and 0.96,respectively,both of which adjusted with shrub age.The root system displayed a self-similar branching pattern,maintaining a constant cross-sectional area ratio of 1.13 before and after branching,deviating from the area-preserving rule.These adaptive traits allow R.soongorica to efficiently expand its nutrient acquisition zone,minimize internal competition,and optimize resource uptake from the upper soil layers.Furthermore,significant linear relationships were observed between log10-transformed root collar diameter and log10-transformed total coarse root length,biomass,and topological parameters.These findings advance non-destructive approaches for studying root characteristics and contribute to the development of root-related models.Besides,this study provides new insights into the adaptive strategies of R.soongorica under extreme drought conditions,offering valuable guidance for species selection and cultivation in desert restoration efforts.展开更多
Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied ...Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied the interaction between AMF (Paraglomus occultum) and exogenous PAs, including putrescine (Put), spermidine (Spd) and spermine (Spin) on mycorrhizal development of different parts of root system, plant growth, RSA and carbohydrate concentrations of 6-m-old citrus (Citrus tangerine Hort. ex Tanaka) seedlings. After 14 wk of PAs application, PA-treated mycorrhizal seedlings exhibited better mycorrhizal colonization and numbers of vesicles, arbuscules, and entry points, and the best mycorrhizal status of taproot, first-, second-, and third-order lateral roots was respectively found in mycorrhizal seedlings supplied with Put, Spd and Spm, suggesting that PAs might act as a regulated factor of mycorrhizal development through transformation of root sucrose more into glucose for sustaining mycorrhizal development. AMF usually notably increases RSA traits (taproot length, total length, average diameter, projected area, surface area, volume, and number of first-, second-, and third-order lateral roots) of only PA-treated seedlings. Among the three PA species, greater positive effects on RSA change and plant biomass increment of the seedlings generally rank as Spd〉Spm〉Put, irrespective of whether or not AMF colonization. PAs significantly changed the RSA traits in mycorrhizal but not in non-mycorrhizal seedlings. It suggests that the application of PAs (especially Spd) to AMF plants would optimize RSA of citrus seedlings, thus increasing plant growth (shoot and root dry weight).展开更多
The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive response...The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat(Triticum aestivum L.). Here, a high-throughput germination paper-based plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah×Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus(QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2 D, which was found under low nitrate conditions, revealed gene enrichment in N-related biological processes and 28 differentially expressed genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate, as well as targets that could help improve N capture in wheat.展开更多
Purpose-This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.Design/methodology/approach-Based on the analysis for the future development trends of wor...Purpose-This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.Design/methodology/approach-Based on the analysis for the future development trends of world railway,combined with the actual development needs in China high-speed railway,The definition and scientific connotation of intelligent high-speed railway(IHSR)are given at first,and then the system architecture of IHSR are outlined,including 1 basic platform,3 business sectors,10 business fields,and 18 innovative applications.At last,a basic platform with cloud edge integration for IHSR is designed.Findings-The rationality,feasibility and implementability of the system architecture of IHSR have been verified on and applied to the Beijing-Zhangjiakou high-speed railway,providing important support for the construction and operation of the world’s first IHSR.Originality/value-This paper systematically gives the definition and connotation of the IHSR and put forward the system architecture of IHSR for first time.It will play the most important role in the design,construction and operation of IHSR.展开更多
In the typical streaming media system, the streaming media server is system bottleneck with the expansion of Internet subscribers. This paper proposes an innovational high performance streaming media system architectu...In the typical streaming media system, the streaming media server is system bottleneck with the expansion of Internet subscribers. This paper proposes an innovational high performance streaming media system architecture (HPSMS) based on the logical separation of streaming media transport protocol. The system avoids expensive store-and-forward data copies between streaming media server and storage devices, improves the system performance greatly. The system bandwidth continuously increases with the expansion of storage system capacity is the highlight. The performance of the proposed HPSMS is evaluated through a practical prototype implementation.展开更多
Delivering IPTV services entails a complex integration of a variety of industries as well as the support of network,computer,and image processing technologies. That is to say,the IPTV architecture should carry a myria...Delivering IPTV services entails a complex integration of a variety of industries as well as the support of network,computer,and image processing technologies. That is to say,the IPTV architecture should carry a myriad of services and technologies. In light of current telecom/TV status,the IPTV architecture can be set up on the convergence of the three networks to deliver comprehensive services and make Live TV,TV on Demand (TVOD),and Time-shifted TV services accessible on one platform. It also supports local and cross-regional user and service certification,provides EPG and smooth TV images and guarantees secured content as well.展开更多
China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develo...China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develop a new approach of systems engineering to improve the quality and efficiency of space systems design considering the large number of original design problems expected in the future. Adopting Model-Based Systems Engineering(MBSE) and Digital Twin method are important development initiatives in the field of modern engineering design. In the initial phase of system design, it is necessary to generate firm system architecture models based on the needs of stakeholders. The quality of the system design in this phase has a great impact on the detailed design and implementation for the subsequent system, and also plays an important role in the performance, development progress and cost of the whole system. Through the collaboration of cross-professional teams, modeling and model execution, comparing the model execution with expected results, MBSE has enabled digital model-level verification and validation before test verification and validation based on physical products, thus improving the design exactness, completeness and greatly reducing design errors or defects. This paper explores the logical ideas behind modeling of system architectures in order to promote the adoption of MBSE in the field of space systems.展开更多
Plant roots are crucial for nitrogen uptake.To efficiently acquire N,root system architecture(RSA),which includes the length and quantity of primary roots,lateral roots and root hairs,is dynamically regulated by the s...Plant roots are crucial for nitrogen uptake.To efficiently acquire N,root system architecture(RSA),which includes the length and quantity of primary roots,lateral roots and root hairs,is dynamically regulated by the surrounding N status.For crops,an ideotype RSA characterized by enhanced plasticity to meet various N demands under fluctuating N conditions is fundamental for high N utilization and subsequent yield.Therefore,exploring the genetic basis of N-dependent RSA,especially in crops,is of great significance.This review summarizes how plants sense both local and systemic N signals and transduce them to downstream pathways.Additionally,it presents the current understanding of genetic basis of N-dependent root plasticity in Arabidopsis and major crops.Also,to fully understand the mechanisms underlying N-dependent root morphogenesis and effectively identify loci associated with an ideotype RSA in crops,more attention should be paid to non-destructive,in situ phenotyping of root traits,cell-type-specific exploration of gene functions,and crosstalk between root architecture,environment and management in the future.展开更多
Drought is a natural disaster that profoundly impacts on global agricultural production,significantly reduces crop yields,and thereby poses a severe threat to worldwide food security.Addressing the challenge of effect...Drought is a natural disaster that profoundly impacts on global agricultural production,significantly reduces crop yields,and thereby poses a severe threat to worldwide food security.Addressing the challenge of effectively improving crop drought resistance(DR)to mitigate yield loss under drought conditions is a global issue.An optimal root system architecture(RSA)plays a pivotal role in enhancing the capacity of crops to efficiently uptake water and nutrients,which consequently strengthens their resilience against environmental stresses.In this review,we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes.Based on the current research,we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR.Lastly,we discuss the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.展开更多
With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 pre...With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.展开更多
The energy sector's digital transformation brings mutually dependent communication and energy infrastructure,tightening the relationship between the physical and the digital world.Digital twins(DT)are the key conc...The energy sector's digital transformation brings mutually dependent communication and energy infrastructure,tightening the relationship between the physical and the digital world.Digital twins(DT)are the key concept for this.This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain.By reviewing different definitions and applications,the authors present a new definition of DTs specifically tailored to power systems.Based on the proposed definition and extensive deliberations and consultations with distribution system operators,energy traders,and municipalities,the authors introduce a vision of a standard DT ecosystem architecture that offers services beyond real-time updates and can seamlessly integrate with existing transmission and distribution system operators'processes while reconciling with concepts such as microgrids and local energy communities based on a system-of-systems view.The authors also discuss their vision related to the integration of power system DTs into various phases of the system's life cycle,such as long-term planning,emphasising challenges that remain to be addressed,such as managing measurement and model errors,and uncertainty propagation.Finally,the authors present their vision of how artificial intelligence and machine learning can enhance several power systems DT modules established in the proposed architecture.展开更多
Maize(Zea mays) root system architecture(RSA)mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study,a set of 204 recombinant inbred lines(RILs) was derived from the w...Maize(Zea mays) root system architecture(RSA)mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study,a set of 204 recombinant inbred lines(RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 Chang7-2),genotyped by sequencing(GBS) and evaluated as seedlings for 24 RSA related traits divided into primary,seminal and total root classes. Signi ficant differences between the means of the parental phenotypes were detected for 18 traits,and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci(QTL) were identi fied that individually explained from1.6% to 11.6%(total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen,24 and 20 QTL were identi fied for primary,seminal and total root classes of traits,respectively. We found hotspots of 5,3,4 and 12 QTL in maize chromosome bins 2.06,3.02-03,9.02-04,and 9.05-06,respectively,implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.展开更多
The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers.The beneficial semidwarfism of cereal Green Revolution ...The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers.The beneficial semidwarfism of cereal Green Revolution cultivars is due to the accumulation of plant growth-repressing DELLA proteins,which increases lodging resistance but requires a high-nitrogen fertilizer to obtain high yield.Given that environmentally degrading fertilizer use underpins current worldwide crop production,future agricultural sustainability needs a sustainable Green Revolution through reducing N fertilizer use while boosting grain yield above what is currently achievable.Despite a great deal of research efforts,only a few genes have been demonstrated to improve N-use efficiency in crops.The molecular mechanisms underlying the coordination between plant growth and N metabolism is still not fully understood,thus preventing significant improvement.Recent advances of how plants sense,capture and respond to varying N supply in model plants have shed light on how to improve sustainable productivity in agriculture.This review focuses on the current understanding of root developmental and metabolic adaptations to N availability,and discuss the potential approaches to improve N-use efficiency in high-yielding cereal crops.展开更多
Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal ...Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.展开更多
A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution o...A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.展开更多
The risk assessment system has been applied to the information security,energy,medical and other industries.Through the risk assessment system,it is possible to quantify the possibility of the impact or loss caused by...The risk assessment system has been applied to the information security,energy,medical and other industries.Through the risk assessment system,it is possible to quantify the possibility of the impact or loss caused by an event before or after an event,thereby avoiding the risk or reducing the loss.However,the existing risk assessment system architecture is mostly a centralized architecture,which could lead to problems such as data leakage,tampering,and central cheating.Combined with the technology of block chain,which has the characteristics of decentralization,security and credibility,collective maintenance,and untamperability.This paper proposes a new block chainbased risk assessment system architecture and a consensus mechanism algorithm based on DPOS improvement.This architecture uses an improved consensus mechanism to achieve a safe and efficient risk assessment solving the problem of data tampering in the risk assessment process,avoiding data leakage caused by improper data storage.A convenient,safe and fast risk assessment is achieved in conjunction with the improved consensus mechanism.In addition,by comparing existing risk assessment architecture,the advantages and impacts of the new block chain-based risk assessment system architecture are analyzed.展开更多
Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integr...Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.展开更多
In a dynamic environment, it is vital for enterpris e to have flexible information system architecture to integrate ERP, Supply Chain Management (SCM) and E-Commerce (EC). The traditional systems are established o n t...In a dynamic environment, it is vital for enterpris e to have flexible information system architecture to integrate ERP, Supply Chain Management (SCM) and E-Commerce (EC). The traditional systems are established o n the ERP-centered flat architecture. This architecture has some disadvantages in supporting the dynamics of enterprises. Firstly, ERP is already a very expens ive and complex system; the extension based on it can only increase the complexi ty and make the implementation more expensive and risky. Secondly, under the arc hitecture, the flexibility is reduced sharply although the execution efficiency is maintained. In a rapid changing environment, flexibility is also an equally i mportant factor besides execution efficiency. Thirdly, it cannot support the dyn amic collaboration efficiently. The prevailing of the flat architecture is not d ue to its advantage but to the big software providers. From the system viewpoint , a hierarchical architecture is proposed. Difference from the current architect ure, in the hierarchical paradigm, ERP is put in the bottom level rather centere d. SCM is the center system, which adopts a multi-agent structure. EC is regard ed as its foreground interface, while ERP and other information system of the pa rtner or internal units are the background executors. EC is the extension of mar ket agent and purchase agent. It fulfills the function of trade on Internet by s ending orders to be executed to SCM and receiving the progress information of th e orders from SCM. After receiving orders from EC, the agent in charge of schedu le in SCM makes preliminary plan in form of instructions (which may be infeasibl e) based on the information of source. Trough the coordination of multi agent, the plan is adjusted to be feasible. Compared with current ERP-centered flat ar chitecture, the hierarchical structure pays more attention to dynamic collaborat ion rather the optimization within the enterprise. At last, two engineering case s, Beijing Shang Pu Electric Ltd and Qingtao Tianyue International Building Mate rial Free Trade City, are presented to illustrate the idea.展开更多
Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize ...Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize acquisition and plant growth.Here,we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions.Our studies,using P efficient SC103 and inefficient BTx635 sorghum cultivars,identified significant differences in root traits,with SC103 developing a larger root system with more and longer lateral roots,and enhanced shoot biomass,under both nutrient sufficient and deficient conditions.In addition to this constitutive attribute,under P deficiency,both cultivars exhibited an initial increase in lateral root development;however,SC103 still maintained the larger root biomass.Although N deficiency and drought stress inhibited both root and shoot growth,for both sorghum cultivars,SC103 again maintained the better performance.These findings reveal that SC103,a P efficient sorghum cultivar,also exhibited enhanced growth performance under N deficiency and drought.Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient-and drought-resilient crops.展开更多
A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion u...A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.展开更多
基金funded by the Guangxi Science and Technology Plan Project(Guike AD22080050)the Basic Research Ability Improvement Project of Young and Middle-aged Teachers of Universities in Guangxi(2022KY0386)+1 种基金the Opening Foundation of Key Laboratory of Environment Change and Resources Use in Beibu Gulf,Ministry of Education,Nanning Normal University(NNNU-KLOP-K2202)the National Natural Science Foundation of China(42471055).
文摘Root system architecture has often been overlooked in plant research despite its critical role in plant adaptation to environmental conditions.This study focused on the root system architecture of the desert shrub Reaumuria soongorica in the Alxa steppe desert,Northwest China.Plant samples were collected during May-September 2019.Using excavation methods,in situ measurements,and root scanning techniques,we analyzed the root distribution,topology,and branching patterns of R.soongorica across an age sequence of 7-51 a.Additionally,we investigated the allometric relationships of root collar diameter with total coarse root length,biomass,and topological parameters.The results showed that the roots of R.soongorica were predominantly concentrated in shallow soil layers(10-50 cm),with lateral root branching and biomass allocation increasing with shrub age.The root topology exhibited a herringbone-like structure,with average topological and modified topological indices of 0.89 and 0.96,respectively,both of which adjusted with shrub age.The root system displayed a self-similar branching pattern,maintaining a constant cross-sectional area ratio of 1.13 before and after branching,deviating from the area-preserving rule.These adaptive traits allow R.soongorica to efficiently expand its nutrient acquisition zone,minimize internal competition,and optimize resource uptake from the upper soil layers.Furthermore,significant linear relationships were observed between log10-transformed root collar diameter and log10-transformed total coarse root length,biomass,and topological parameters.These findings advance non-destructive approaches for studying root characteristics and contribute to the development of root-related models.Besides,this study provides new insights into the adaptive strategies of R.soongorica under extreme drought conditions,offering valuable guidance for species selection and cultivation in desert restoration efforts.
基金supported by the National Natural Science Foundation of China (30800747)the Key Project of Ministry of Education of China (211107)the Science-Technology Research Project of Hubei Provincial Department of Education, China (Q20111301)
文摘Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied the interaction between AMF (Paraglomus occultum) and exogenous PAs, including putrescine (Put), spermidine (Spd) and spermine (Spin) on mycorrhizal development of different parts of root system, plant growth, RSA and carbohydrate concentrations of 6-m-old citrus (Citrus tangerine Hort. ex Tanaka) seedlings. After 14 wk of PAs application, PA-treated mycorrhizal seedlings exhibited better mycorrhizal colonization and numbers of vesicles, arbuscules, and entry points, and the best mycorrhizal status of taproot, first-, second-, and third-order lateral roots was respectively found in mycorrhizal seedlings supplied with Put, Spd and Spm, suggesting that PAs might act as a regulated factor of mycorrhizal development through transformation of root sucrose more into glucose for sustaining mycorrhizal development. AMF usually notably increases RSA traits (taproot length, total length, average diameter, projected area, surface area, volume, and number of first-, second-, and third-order lateral roots) of only PA-treated seedlings. Among the three PA species, greater positive effects on RSA change and plant biomass increment of the seedlings generally rank as Spd〉Spm〉Put, irrespective of whether or not AMF colonization. PAs significantly changed the RSA traits in mycorrhizal but not in non-mycorrhizal seedlings. It suggests that the application of PAs (especially Spd) to AMF plants would optimize RSA of citrus seedlings, thus increasing plant growth (shoot and root dry weight).
基金supported by the Biotechnology and Biological Sciences Research Council,UK(BB/M001806/1,BB/L026848/1,BB/P026834/1,and BB/M019837/1)(MJB,DMW,and MPP)the Leverhulme Trust,UK(RPG-2016–409)(MJB and DMW)+1 种基金the European Research Council FUTUREROOTS Advanced Investigator Grant,UK(294729)to MG,JAA,DMW,and MJBthe University of Nottingham Future Food Beacon of Excellence,UK。
文摘The root system architecture(RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat(Triticum aestivum L.). Here, a high-throughput germination paper-based plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah×Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus(QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2 D, which was found under low nitrate conditions, revealed gene enrichment in N-related biological processes and 28 differentially expressed genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate, as well as targets that could help improve N capture in wheat.
基金supported by the Science and Technology Research and Development Program of China State Railway Group Co.Ltd. (K2021X010).
文摘Purpose-This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.Design/methodology/approach-Based on the analysis for the future development trends of world railway,combined with the actual development needs in China high-speed railway,The definition and scientific connotation of intelligent high-speed railway(IHSR)are given at first,and then the system architecture of IHSR are outlined,including 1 basic platform,3 business sectors,10 business fields,and 18 innovative applications.At last,a basic platform with cloud edge integration for IHSR is designed.Findings-The rationality,feasibility and implementability of the system architecture of IHSR have been verified on and applied to the Beijing-Zhangjiakou high-speed railway,providing important support for the construction and operation of the world’s first IHSR.Originality/value-This paper systematically gives the definition and connotation of the IHSR and put forward the system architecture of IHSR for first time.It will play the most important role in the design,construction and operation of IHSR.
文摘In the typical streaming media system, the streaming media server is system bottleneck with the expansion of Internet subscribers. This paper proposes an innovational high performance streaming media system architecture (HPSMS) based on the logical separation of streaming media transport protocol. The system avoids expensive store-and-forward data copies between streaming media server and storage devices, improves the system performance greatly. The system bandwidth continuously increases with the expansion of storage system capacity is the highlight. The performance of the proposed HPSMS is evaluated through a practical prototype implementation.
文摘Delivering IPTV services entails a complex integration of a variety of industries as well as the support of network,computer,and image processing technologies. That is to say,the IPTV architecture should carry a myriad of services and technologies. In light of current telecom/TV status,the IPTV architecture can be set up on the convergence of the three networks to deliver comprehensive services and make Live TV,TV on Demand (TVOD),and Time-shifted TV services accessible on one platform. It also supports local and cross-regional user and service certification,provides EPG and smooth TV images and guarantees secured content as well.
文摘China’s space technology has gradually improved from the early stages’ introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develop a new approach of systems engineering to improve the quality and efficiency of space systems design considering the large number of original design problems expected in the future. Adopting Model-Based Systems Engineering(MBSE) and Digital Twin method are important development initiatives in the field of modern engineering design. In the initial phase of system design, it is necessary to generate firm system architecture models based on the needs of stakeholders. The quality of the system design in this phase has a great impact on the detailed design and implementation for the subsequent system, and also plays an important role in the performance, development progress and cost of the whole system. Through the collaboration of cross-professional teams, modeling and model execution, comparing the model execution with expected results, MBSE has enabled digital model-level verification and validation before test verification and validation based on physical products, thus improving the design exactness, completeness and greatly reducing design errors or defects. This paper explores the logical ideas behind modeling of system architectures in order to promote the adoption of MBSE in the field of space systems.
基金supported by International Partnership Program of Chinese Academy of Sciences(153E11KYSB20190059)G2P Project of Ministry of Science and Technology(2020YFE0202300)Guangdong Basic and Applied Basic Research Foundation(2023A1515110406)。
文摘Plant roots are crucial for nitrogen uptake.To efficiently acquire N,root system architecture(RSA),which includes the length and quantity of primary roots,lateral roots and root hairs,is dynamically regulated by the surrounding N status.For crops,an ideotype RSA characterized by enhanced plasticity to meet various N demands under fluctuating N conditions is fundamental for high N utilization and subsequent yield.Therefore,exploring the genetic basis of N-dependent RSA,especially in crops,is of great significance.This review summarizes how plants sense both local and systemic N signals and transduce them to downstream pathways.Additionally,it presents the current understanding of genetic basis of N-dependent root plasticity in Arabidopsis and major crops.Also,to fully understand the mechanisms underlying N-dependent root morphogenesis and effectively identify loci associated with an ideotype RSA in crops,more attention should be paid to non-destructive,in situ phenotyping of root traits,cell-type-specific exploration of gene functions,and crosstalk between root architecture,environment and management in the future.
基金supported by the Key Technologies Research and Development Program,China(2022YFE0100500)the National Natural Science Foundation of China(31971954,31960405,32061143031)+2 种基金Hainan Yazhou Bay Seed Lab and China National Seed Group(B23YQ1510)Gansu Province Industrial Support Plan(2022CYZC-46)Postdoctoral Fellowship Program of CPSF(GZC20230909).
文摘Drought is a natural disaster that profoundly impacts on global agricultural production,significantly reduces crop yields,and thereby poses a severe threat to worldwide food security.Addressing the challenge of effectively improving crop drought resistance(DR)to mitigate yield loss under drought conditions is a global issue.An optimal root system architecture(RSA)plays a pivotal role in enhancing the capacity of crops to efficiently uptake water and nutrients,which consequently strengthens their resilience against environmental stresses.In this review,we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes.Based on the current research,we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR.Lastly,we discuss the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.
文摘With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.
基金Rijksdienst voor Ondernemend Nederland,Grant/Award Number:MOOOI32019。
文摘The energy sector's digital transformation brings mutually dependent communication and energy infrastructure,tightening the relationship between the physical and the digital world.Digital twins(DT)are the key concept for this.This paper initially discusses the evolution of the DT concept across various engineering applications before narrowing its focus to the power systems domain.By reviewing different definitions and applications,the authors present a new definition of DTs specifically tailored to power systems.Based on the proposed definition and extensive deliberations and consultations with distribution system operators,energy traders,and municipalities,the authors introduce a vision of a standard DT ecosystem architecture that offers services beyond real-time updates and can seamlessly integrate with existing transmission and distribution system operators'processes while reconciling with concepts such as microgrids and local energy communities based on a system-of-systems view.The authors also discuss their vision related to the integration of power system DTs into various phases of the system's life cycle,such as long-term planning,emphasising challenges that remain to be addressed,such as managing measurement and model errors,and uncertainty propagation.Finally,the authors present their vision of how artificial intelligence and machine learning can enhance several power systems DT modules established in the proposed architecture.
基金supported by 863 Project (2012AA10A305)Chinese Universities Scientific Fund (2014XJ036)+1 种基金NSF (31301321)948 Project (2011-G15)
文摘Maize(Zea mays) root system architecture(RSA)mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study,a set of 204 recombinant inbred lines(RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 Chang7-2),genotyped by sequencing(GBS) and evaluated as seedlings for 24 RSA related traits divided into primary,seminal and total root classes. Signi ficant differences between the means of the parental phenotypes were detected for 18 traits,and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci(QTL) were identi fied that individually explained from1.6% to 11.6%(total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen,24 and 20 QTL were identi fied for primary,seminal and total root classes of traits,respectively. We found hotspots of 5,3,4 and 12 QTL in maize chromosome bins 2.06,3.02-03,9.02-04,and 9.05-06,respectively,implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.
基金supported by the National Natural Science Foundation of China(32020103004,32170251)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24020309+1 种基金the Youth Innovation Promotion Association CAS(2019100)Key-Area Research and Development Program of Guangdong Province(2018B020202012)。
文摘The Green Revolution of the 1960s boosted crop yields in part through widespread production of semidwarf plant cultivars and extensive use of mineral fertilizers.The beneficial semidwarfism of cereal Green Revolution cultivars is due to the accumulation of plant growth-repressing DELLA proteins,which increases lodging resistance but requires a high-nitrogen fertilizer to obtain high yield.Given that environmentally degrading fertilizer use underpins current worldwide crop production,future agricultural sustainability needs a sustainable Green Revolution through reducing N fertilizer use while boosting grain yield above what is currently achievable.Despite a great deal of research efforts,only a few genes have been demonstrated to improve N-use efficiency in crops.The molecular mechanisms underlying the coordination between plant growth and N metabolism is still not fully understood,thus preventing significant improvement.Recent advances of how plants sense,capture and respond to varying N supply in model plants have shed light on how to improve sustainable productivity in agriculture.This review focuses on the current understanding of root developmental and metabolic adaptations to N availability,and discuss the potential approaches to improve N-use efficiency in high-yielding cereal crops.
基金supported in part by the National Science Foundation(IOS-1444549 to H.T.)the Deutsche Forschungsgemeinschaft(WI1728/13-1 to N.v.W.)Grants-in-aid for Scientific Research from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(T.K.)
文摘Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.
基金the support of the Biotechnology and Biological Sciences Research Council and Engineering and Physical Sciences Research Council funding to the Centre for Plant Integrative Biologyfunding in the form of a Biotechnology and Biological Sciences Research Council Professorial Research Fellowship+1 种基金European Research Council Advanced Investigator Grant funding(FUTUREROOTS)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University
文摘A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.
基金supported by the National Key Research and Development Project of China(No.2017YFB0802302)the National Natural Science Foundation of China(No.61572086,No.61402058)+4 种基金the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)the Application Foundation Project of Sichuan Province(No.2017JY0168)the Key Research and Development Project of Sichuan Province(No.2018TJPT0012)the Science and Technology Support Project of Sichuan Province(No.2016FZ0112,No.2018GZ0204).
文摘The risk assessment system has been applied to the information security,energy,medical and other industries.Through the risk assessment system,it is possible to quantify the possibility of the impact or loss caused by an event before or after an event,thereby avoiding the risk or reducing the loss.However,the existing risk assessment system architecture is mostly a centralized architecture,which could lead to problems such as data leakage,tampering,and central cheating.Combined with the technology of block chain,which has the characteristics of decentralization,security and credibility,collective maintenance,and untamperability.This paper proposes a new block chainbased risk assessment system architecture and a consensus mechanism algorithm based on DPOS improvement.This architecture uses an improved consensus mechanism to achieve a safe and efficient risk assessment solving the problem of data tampering in the risk assessment process,avoiding data leakage caused by improper data storage.A convenient,safe and fast risk assessment is achieved in conjunction with the improved consensus mechanism.In addition,by comparing existing risk assessment architecture,the advantages and impacts of the new block chain-based risk assessment system architecture are analyzed.
文摘Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.
文摘In a dynamic environment, it is vital for enterpris e to have flexible information system architecture to integrate ERP, Supply Chain Management (SCM) and E-Commerce (EC). The traditional systems are established o n the ERP-centered flat architecture. This architecture has some disadvantages in supporting the dynamics of enterprises. Firstly, ERP is already a very expens ive and complex system; the extension based on it can only increase the complexi ty and make the implementation more expensive and risky. Secondly, under the arc hitecture, the flexibility is reduced sharply although the execution efficiency is maintained. In a rapid changing environment, flexibility is also an equally i mportant factor besides execution efficiency. Thirdly, it cannot support the dyn amic collaboration efficiently. The prevailing of the flat architecture is not d ue to its advantage but to the big software providers. From the system viewpoint , a hierarchical architecture is proposed. Difference from the current architect ure, in the hierarchical paradigm, ERP is put in the bottom level rather centere d. SCM is the center system, which adopts a multi-agent structure. EC is regard ed as its foreground interface, while ERP and other information system of the pa rtner or internal units are the background executors. EC is the extension of mar ket agent and purchase agent. It fulfills the function of trade on Internet by s ending orders to be executed to SCM and receiving the progress information of th e orders from SCM. After receiving orders from EC, the agent in charge of schedu le in SCM makes preliminary plan in form of instructions (which may be infeasibl e) based on the information of source. Trough the coordination of multi agent, the plan is adjusted to be feasible. Compared with current ERP-centered flat ar chitecture, the hierarchical structure pays more attention to dynamic collaborat ion rather the optimization within the enterprise. At last, two engineering case s, Beijing Shang Pu Electric Ltd and Qingtao Tianyue International Building Mate rial Free Trade City, are presented to illustrate the idea.
文摘Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize acquisition and plant growth.Here,we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions.Our studies,using P efficient SC103 and inefficient BTx635 sorghum cultivars,identified significant differences in root traits,with SC103 developing a larger root system with more and longer lateral roots,and enhanced shoot biomass,under both nutrient sufficient and deficient conditions.In addition to this constitutive attribute,under P deficiency,both cultivars exhibited an initial increase in lateral root development;however,SC103 still maintained the larger root biomass.Although N deficiency and drought stress inhibited both root and shoot growth,for both sorghum cultivars,SC103 again maintained the better performance.These findings reveal that SC103,a P efficient sorghum cultivar,also exhibited enhanced growth performance under N deficiency and drought.Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient-and drought-resilient crops.
文摘A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.