期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
VECTORIAL EKELAND'S VARIATIONAL PRINCIPLE WITH A W-DISTANCE AND ITS EQUIVALENT THEOREMS 被引量:8
1
作者 丘京辉 李博 贺飞 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2221-2236,共16页
By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio... By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved. 展开更多
关键词 takahashi's minimization theorem Ekeland's variational principle Caristi'sfixed point theorem Gerstewitz's function w-distance
在线阅读 下载PDF
带有w-距离的向量值Takahashi极小化定理
2
作者 李博 丘京辉 《苏州大学学报(自然科学版)》 CAS 2010年第1期8-10,35,共4页
利用w-距离给出了定义于完备距离空间、取值于局部凸空间中的向量值函数的Takahashi极小化定理.
关键词 向量值函数 向量值takahashi极小化定理 w-距离
在线阅读 下载PDF
关于局部凸空间中向量Ekeland变分原理的等价性 被引量:4
3
作者 万轩 赵克全 《运筹学学报》 CSCD 北大核心 2013年第3期124-128,共5页
基于各种Ekeland变分原理的等价形式,主要研究局部凸空间中给定有界凸子集乘以距离函数为扰动的单调半连续映射的向量Ekeand变分原理的等价性问题.首先利用局部凸空间中的向量Ekeland变分原理证明了向量Caristi-Kirk不动点定理,向量Taka... 基于各种Ekeland变分原理的等价形式,主要研究局部凸空间中给定有界凸子集乘以距离函数为扰动的单调半连续映射的向量Ekeand变分原理的等价性问题.首先利用局部凸空间中的向量Ekeland变分原理证明了向量Caristi-Kirk不动点定理,向量Takahashi非凸极小化定理和向量Oettli-Thera定理.进一步研究了向量Ekeland变分原理与向量Caristi-Kirk不动点定理,向量Takahashi非凸极小化定理和向量Oettli-Thera定理的等价性. 展开更多
关键词 向量Ekeland变分原理 向量Caristi-Kirk不动点定理 向量takahashi非凸极小化定理 向量Oettli-Thera定理 等价性
在线阅读 下载PDF
强b-距离空间中的Ekeland变分原理 被引量:1
4
作者 刘萱 贺飞 《应用数学》 北大核心 2023年第4期877-883,共7页
本文在强b-距离空间中建立实值Ekeland变分原理,由此推出强b-距离空间中的Caristi型不动点定理和Takahashi非凸极小化定理.同时在强b-距离空间中给出均衡形式的Ekeland变分原理的若干等价命题.我们的结果与距离空间中相应结果形式一致,... 本文在强b-距离空间中建立实值Ekeland变分原理,由此推出强b-距离空间中的Caristi型不动点定理和Takahashi非凸极小化定理.同时在强b-距离空间中给出均衡形式的Ekeland变分原理的若干等价命题.我们的结果与距离空间中相应结果形式一致,也是距离空间中结果的推广. 展开更多
关键词 强b-距离空间 EKELAND变分原理 Caristi型不动点定理 takahashi非凸极小化定理 Oettli-Théra定理
在线阅读 下载PDF
具有Q-函数的集值Ekeland变分原理的等价性
5
作者 万轩 《贵州师范大学学报(自然科学版)》 CAS 2019年第2期59-63,共5页
根据各种Ekeland变分原理的等价形式,主要对在拟度量空间中所建立的具有Q-函数的集值Ekeland变分原理进行其等价性研究。首先根据在拟度量空间中所建立的具有Q-函数的集值Ekeland变分原理给出相应的集值形式的Caristi-Kirk不动点定理,Ta... 根据各种Ekeland变分原理的等价形式,主要对在拟度量空间中所建立的具有Q-函数的集值Ekeland变分原理进行其等价性研究。首先根据在拟度量空间中所建立的具有Q-函数的集值Ekeland变分原理给出相应的集值形式的Caristi-Kirk不动点定理,Takahashi非凸极小化定理和Oettli-Théra定理,并给出证明。随后讨论新建立的集值形式的Caristi-Kirk不动点定理,Takahashi非凸极小化定理和Oettli-Théra定理与具有Q-函数的集值Ekeland变分原理之间的等价性。 展开更多
关键词 集值Ekeland变分原理 集值Caristi-Kirk不动点定理 集值takahashi非凸极小化定理 集值Oettli-Théra定理 等价性
在线阅读 下载PDF
P-Distances, Q-Distances and a Generalized Ekeland's Variational Principle in Uniform Spaces 被引量:8
6
作者 Jing Hui QIU Fei HE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第2期235-254,共20页
In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances.... In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements. 展开更多
关键词 Ekeland's variational principle takahashi's nonconvex minimization theorem Caristi'sfixed point theorem uniform space locally convex space p-distance q-distance
原文传递
A General Vectorial Ekeland's Variational Principle with a P-distance 被引量:4
7
作者 Jing Hui QIU Fei HE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第9期1655-1678,共24页
In this paper, by using p-distances on uniform spaces, we establish a general vectorial Ekeland variational principle (in short EVP), where the objective function is defined on a uniform space and taking values in a... In this paper, by using p-distances on uniform spaces, we establish a general vectorial Ekeland variational principle (in short EVP), where the objective function is defined on a uniform space and taking values in a pre-ordered real linear space and the perturbation involves a p-distance and a monotone function of the objective function. Since p-distances are very extensive, such a form of the perturbation in deed contains many different forms of perturbations appeared in the previous versions of EVP. Besides, we only require the objective function has a very weak property, as a substitute for lower semi-continuity, and only require the domain space (which is a uniform space) has a very weak type of completeness, i.e., completeness with respect to a certain p-distance. Such very weak type of completeness even includes local completeness when the uniform space is a locally convex topological vector space. From the general vectorial EVP, we deduce a general vectorial Caristi's fixed point theorem and a general vectorial Takahashi's nonconvex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. We see that the above general vectorial EVP includes many particular versions of EVP, which extend and complement the related known results. 展开更多
关键词 Vectorial Ekeland’s variational principle vectorial Caristi’s fixed point theorem vectorial takahashi’s minimization theorem p-distance Gerstewitz’s function
原文传递
On Ha's Version of Set-valued Ekeland's Variational Principle 被引量:4
8
作者 Jing Hui QIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第4期717-726,共10页
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne... By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other. 展开更多
关键词 Ekeland's variational principle set-valued map locally convex space Caristi-Kirk's fixedpoint theorem takahashi's nonconvex minimization theorem
原文传递
Sequentially Lower Complete Spaces and Ekeland's Variational Principle 被引量:3
9
作者 Fei HE Jing-Hui QIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第8期1289-1302,共14页
By using sequentially lower complete spaces(see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692(2013)]), we give a new version of vec... By using sequentially lower complete spaces(see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692(2013)]), we give a new version of vectorial Ekeland's variational principle. In the new version, the objective function is defined on a sequentially lower complete space and taking values in a quasi-ordered locally convex space, and the perturbation consists of a weakly countably compact set and a non-negative function p which only needs to satisfy p(x, y) = 0 iff x = y. Here, the function p need not satisfy the subadditivity.From the new Ekeland's principle, we deduce a vectorial Caristi's fixed point theorem and a vectorial Takahashi's non-convex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. By considering some particular cases, we obtain a number of corollaries,which include some interesting versions of fixed point theorem. 展开更多
关键词 Vectorial Ekeland variational principle vectorial Caristi's fixed point theorem vectorial takahashi's non-convex minimization th
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部