Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this pa...Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
Aim The solvability condition for robust stabilization problem associated with a plant family P(s,δ) having parameter uncertainty δ was considered. Methods Using Youla parameterization of the stabilizers this pro...Aim The solvability condition for robust stabilization problem associated with a plant family P(s,δ) having parameter uncertainty δ was considered. Methods Using Youla parameterization of the stabilizers this problem was transformed into a strong stabilization problem associated with a related plant family G (s, δ). Results A necessary solvability condition was established in terms of the parity interlacing property of each element in G(s,δ). Another apparently necessary solvability condition is that every element in P(s,δ) must be stabilizable. Conclusion The two conditions will be compared with each other and it will be shown that every element in G(s,δ) possesses parity interlacing property if P(s,δ) is stabilizable.展开更多
This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia...This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.展开更多
The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven...The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.展开更多
Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, ...Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints.展开更多
This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractiona...This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.展开更多
Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global r...Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global ranges as well as model complexities on the calibrationand uncertainty estimates. The primary purpose of this paper is to investigate these impacts byemploying Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM wasdesigned to explore the general aspects of land-surface energy balance representation within acommon modeling framework that can be run from a simple energy balance formulation to a complexmosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem,importance sampling, and very fast simulated annealing. The model forcing data and surface flux datawere collected at seven sites representing a wide range of climate and vegetation conditions. Foreach site, four experiments were performed with simple and complex CHASM formulations as well asrealistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parametersets were used for each run. The results show that the use of global and realistic ranges givessimilar simulations for both modes for most sites, but the global ranges tend to produce someunreasonable optimal parameter values. Comparison of simple and complex modes shows that the simplemode has more parameters with unreasonable optimal values. Use of parameter ranges and modelcomplexities have significant impacts on frequency distribution of parameters, marginal posteriorprobability density functions, and estimates of uncertainty of simulated sensible and latent heatfluxes. Comparison between model complexity and parameter ranges shows that the former has moresignificant impacts on parameter and uncertainty estimations.展开更多
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin...A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.展开更多
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of...This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.展开更多
In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of...In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.展开更多
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu...A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.展开更多
Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is ...Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.展开更多
Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton m...Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
In this study,a novel safety integrity level(SIL)determination methodology of safety instrumented systems(SISs)with parameter uncertainty is proposed by combining multistage dynamic Bayesian networks(DBNs)and Monte Ca...In this study,a novel safety integrity level(SIL)determination methodology of safety instrumented systems(SISs)with parameter uncertainty is proposed by combining multistage dynamic Bayesian networks(DBNs)and Monte Carlo simulation.A multistage DBN model for SIL determination with multiple redundant cells is established.The models of function inspection test interval and function inspection test stages are alternately connected to form the multistage DBNs.The redundant cells can have different M out of N voting system architectures.An automatic modeling of conditional probability between nodes is developed.The SIL determination of SISs with parameter uncertainty is constructed by using the multistage DBNs and Monte Carlo simulation.A high-pressure SIS in the export of oil wellplatform is adopted to demonstrate the application of the proposed approach.The SIL and availability of the SIS and its subsystems are obtained.The influence of single subsystem on the SIL and availability of the SIS is studied.The influence of single redundant element on the SIL and availability of the subsystem is analyzed.A user-friendly SIL determination software with parameter uncertainty is developed on MATLAB graphical user interface.展开更多
The influence on seismic hazard estimation for 310 cities and towns in the whole nation are studied in particular,owing to uncertainty of seismicity parameters caused by non-uniqueness in selecting statistical time ra...The influence on seismic hazard estimation for 310 cities and towns in the whole nation are studied in particular,owing to uncertainty of seismicity parameters caused by non-uniqueness in selecting statistical time ranges. Andthe regional sketch maps of the average varying values of intensity and the average relative varying values of peakacceleration with different probability of exceedance in 50 years are drawn in the Chinese mainland.展开更多
Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance mo...Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.展开更多
In this paper, we consider dynamical system, in the presence of parameter uncertainties. We apply max-min principles to determine the saddle point solution for the class of differential game arising from the associate...In this paper, we consider dynamical system, in the presence of parameter uncertainties. We apply max-min principles to determine the saddle point solution for the class of differential game arising from the associated dynamical system. We also provide sufficient condition for the existence of this saddle point.展开更多
基金The authors would like to thank the Natural Sciences and Engineering Research Council of Canada(NSERC),IAMGOLD Corporation,and Westwood mine for supporting and funding this research(Grant No.RDCPJ 520428e17)also NSERC discovery funding(Grant No.RGPIN-2019-06693).
文摘Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘Aim The solvability condition for robust stabilization problem associated with a plant family P(s,δ) having parameter uncertainty δ was considered. Methods Using Youla parameterization of the stabilizers this problem was transformed into a strong stabilization problem associated with a related plant family G (s, δ). Results A necessary solvability condition was established in terms of the parity interlacing property of each element in G(s,δ). Another apparently necessary solvability condition is that every element in P(s,δ) must be stabilizable. Conclusion The two conditions will be compared with each other and it will be shown that every element in G(s,δ) possesses parity interlacing property if P(s,δ) is stabilizable.
基金The Major Program of National Natural Science Foundation of China(No.11190015)the National Natural Science Foundation of China(No.61374006)
文摘This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.
基金supported by the National Natural Science Foundation of China (Grant No 60604007)
文摘The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.
文摘Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints.
基金supported by the National Natural Science Foundation of China(Grant Nos.51207173 and 51277192)
文摘This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
文摘Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global ranges as well as model complexities on the calibrationand uncertainty estimates. The primary purpose of this paper is to investigate these impacts byemploying Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM wasdesigned to explore the general aspects of land-surface energy balance representation within acommon modeling framework that can be run from a simple energy balance formulation to a complexmosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem,importance sampling, and very fast simulated annealing. The model forcing data and surface flux datawere collected at seven sites representing a wide range of climate and vegetation conditions. Foreach site, four experiments were performed with simple and complex CHASM formulations as well asrealistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parametersets were used for each run. The results show that the use of global and realistic ranges givessimilar simulations for both modes for most sites, but the global ranges tend to produce someunreasonable optimal parameter values. Comparison of simple and complex modes shows that the simplemode has more parameters with unreasonable optimal values. Use of parameter ranges and modelcomplexities have significant impacts on frequency distribution of parameters, marginal posteriorprobability density functions, and estimates of uncertainty of simulated sensible and latent heatfluxes. Comparison between model complexity and parameter ranges shows that the former has moresignificant impacts on parameter and uncertainty estimations.
基金Automobile Industrial Science Foundation of Shanghai (No.2000187)
文摘A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.
基金National Natural Science Foundation of China Under Grant No. 50608012 and No.10472023The Cardiff Advanced Chinese Engineering Centre
文摘This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.
基金This work was supported in part by the National Key Research and Development Program of China(2021YFB3202200)Guangdong Basic and Applied Basic Research Foundation(2020B1515120071,2021B1515120017).
文摘In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.
基金Under the auspices of National Natural Science Foundation of China (No. 50609005)Chinese Postdoctoral Science Foundation (No. 2009451116)+1 种基金Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z08255)Foundation of Heilongjiang Province Educational Committee (No. 11451022)
文摘A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.
基金This work was supported in part by the Chinese Outstanding Youth Science Foundation (No. 69925308)supported by Program for ChangjiangScholars and Innovative Research Team in University
文摘Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(No.2016OPR0107)the National Natural Science Foundation of China(No.41806013)。
文摘Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金supported by the National Natural Science Foundation of China(No.52171287,No.51779267,No.51707204)the National Key Research and Development Program of China(No.2019YFE0105100)+3 种基金the IKTPLUSS program of Research Council of Norway(No.309628)the Taishan Scholars Project(No.tsqn201909063)the Fundamental Research Funds for the Central Universities,that is,the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(No.20CX02301A)the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province(No.2019KJB016)。
文摘In this study,a novel safety integrity level(SIL)determination methodology of safety instrumented systems(SISs)with parameter uncertainty is proposed by combining multistage dynamic Bayesian networks(DBNs)and Monte Carlo simulation.A multistage DBN model for SIL determination with multiple redundant cells is established.The models of function inspection test interval and function inspection test stages are alternately connected to form the multistage DBNs.The redundant cells can have different M out of N voting system architectures.An automatic modeling of conditional probability between nodes is developed.The SIL determination of SISs with parameter uncertainty is constructed by using the multistage DBNs and Monte Carlo simulation.A high-pressure SIS in the export of oil wellplatform is adopted to demonstrate the application of the proposed approach.The SIL and availability of the SIS and its subsystems are obtained.The influence of single subsystem on the SIL and availability of the SIS is studied.The influence of single redundant element on the SIL and availability of the subsystem is analyzed.A user-friendly SIL determination software with parameter uncertainty is developed on MATLAB graphical user interface.
文摘The influence on seismic hazard estimation for 310 cities and towns in the whole nation are studied in particular,owing to uncertainty of seismicity parameters caused by non-uniqueness in selecting statistical time ranges. Andthe regional sketch maps of the average varying values of intensity and the average relative varying values of peakacceleration with different probability of exceedance in 50 years are drawn in the Chinese mainland.
基金National Natural Science Foundations of China(Nos.71271003,71171003)Programming Fund Project of the Humanities and Social Sciences Research of the Ministry of Education of China(No.12YJA790041)
文摘Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.
基金This work was supported by the National Natural Science Foundation of China (61374054, 61203007), and Natural Science Foundation Research Projection of Shaanxi Province (2013JQ8038).
文摘In this paper, we consider dynamical system, in the presence of parameter uncertainties. We apply max-min principles to determine the saddle point solution for the class of differential game arising from the associated dynamical system. We also provide sufficient condition for the existence of this saddle point.