The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recov...On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.展开更多
Effects of deformation temperature on the mechanical properties and microstructure of lean duplex stainless steels B2102 and S32101 have been investigated. It was found that the strength decreased continuously with in...Effects of deformation temperature on the mechanical properties and microstructure of lean duplex stainless steels B2102 and S32101 have been investigated. It was found that the strength decreased continuously with increases in temperature from -60 ℃ to 100 ℃. The strength of S32101 was higher than that of B2102 owing to its higher nitrogen content. Plasticity of B2102 increased with an increase in deformation temperature from - 60 ℃ and reached the optimal elongation ratio of 49% - 54% after deformation at 20 - 50 ^(2. Martensite transformation was observed during deformation due to the transformation-induced plasticity effect. The optimal elongation was achieved at deformation temperatures close to the Md(3O/50) temperatures of 62 ℃ and 6 ℃ for B2102 and S32101. respectively.展开更多
Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanic...Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanical properties was studied through examining of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and a significant amount of stable retained austenite. Strain-induced transformation to martensite of retained austenite and TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holding led to cementite precipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%, and 25608 MPa.%, respectively.展开更多
Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect...Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect can not get rid of the“soft”feature of the structure entirely,resulting in insufficient yield strength.Here,a Co_(x)Cr_(25)(AlFeNi)_(75-x) high-entropy alloy is designed.NiAl phase is used as strengthening component to improve yield strength,while TRIP effect ensures plasticity.Compared with the previous TRIP high-entropy alloy,its yield strength is nearly doubled,and the uniform elongation is more than 55%at room temperature.Furthermore,the corresponding multiphase microstructure evolution and deformation mechanisms are investigated.Significantly,stacking faults andΣ3 twin boundaries are confirmed to be the nucleation sites of HCP phase by HAADF-STEM.Ingenious composition design and proper heat treatment process make it a perfect combination of precipitation strengthening and transformationinduced plasticity,and thus guide design in the high-performance alloy.展开更多
The surface effect induced transformation texture during vacuum annealing of cold-rolled high manganese transformation-induced plasticity(TRIP)steels was studied.Due to Mn removal occurring at the surface layer,γ→δ...The surface effect induced transformation texture during vacuum annealing of cold-rolled high manganese transformation-induced plasticity(TRIP)steels was studied.Due to Mn removal occurring at the surface layer,γ→δdiffusional phase transformation leads to the formation of hard pancake-shaped ferrite grains due to solution strengthening at the surface and the centre layer remains as austenite+martensite after annealing.In the case of slow heating,{112}/{111}<110>textures for the surface ferrite were strengthened with the increase in temperature and holding time,indicating an inheritance of rolling textures.By increasing the heating rate of annealing,the rotated cube texture was developed in surface ferrite.This kind of multiphase sandwich structure with hard ferrite surface layer and tough austenite dominant centre can increase tensile strength and should also improve deep drawing properties,therefore providing new possibility of controlling properties for the application of high manganese TRIP steel.展开更多
High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potenti...High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potential in the fabrication of steel armor plates.Although various approaches and methods have been conducted to utilize the retained austenite(RA)in the bainitic matrix to control mechanical properties,very few attempts have been conducted to improve ballistic performance utilizing transformationinduced plasticity(TRIP)mechanism.In this study,high-strength bainitic steels were designed by controlling the time of austempering process to have various volume fractions and stability of RA while maintaining high hardness.The dynamic compressive and ballistic impact tests were conducted,and the relation between the effects of TRIP on ballistic performance and the adiabatic shear band(ASB)formation was analyzed.Our results show for the first time that an active TRIP mechanism achieved from a large quantity of metastable RA can significantly enhance the ballistic performance of high-strength bainitic steels because of the improved resistance to ASB formation.Thus,the ballistic performance can be effectively improved by a very short austempering time,which suggests that the utilization of active TRIP behavior via tuning RA acts as a primary mechanism for significantly enhancing the ballistic performance of high-strength bainitic steels.展开更多
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over...Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environment...Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.展开更多
The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitr...The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.An experiment was conducted from 2020-2022 with a high nitrogen use efficiency(high-NUE)cultivar(T-43)and a low-NUE cultivar(LX-3),and four nitrogen levels(0,150,300,and 450 kg ha^(-1))under drip irrigation in large fields.The aim was to study the relationships between root morphology,conformation,biomass,and endogenous hormone contents,yield and NUE.The results showed three main points:1)Under the same N application rate,compared with LX-3,the yield,N partial factor productivity(PFP),fine root length density(FRLD),shoot dry weight(SDW),root indole-3-acetic acid(IAA),and root zeatin and zeatin riboside(Z+ZR)of T-43 were significantly greater by11.4-18.9,11.3-13.5,11.6-15.7,9.9-31.1,6.1-48.1,and 22.8-73.6%,respectively,while the root-shoot ratio(RSR)and root abscisic acid(ABA)were significantly lower(P<0.05);2)nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents(P<0.05).Compared to N0,the yield,RLD,surface area density(SAD),root volume density(RVD),and root endogenous hormones(IAA,Z+ZR)were significantly increased in both cultivars under N2 by 61.6-71.6,64.2-74.0,69.9-105.6,6.67-9.91,54.0-67.8,and 51.4-58.9%,respectively.Compared with N3,the PFP and N agronomic efficiency(NAE)of nitrogen fertilizer under N2 increased by 52.3-62.4 and39.2-63.0%,respectively;3)the responses of root trait plasticity to the N environment significantly differed between the cultivars(P<0.05).Compared with LX-3,T-43 showed a longer root length and larger specific surface area,which is a strategy for adapting to changes in the nutrient environment.For the rice cultivar with high-NUE,the RSR was optimized by increasing the FRLD,root distribution in upper soil layers,and root endogenous hormones(IAA,Z+ZR)under suitable nitrogen conditions(N2).An efficient nutrient acquisition strategy can occur through root plasticity,leading to greater yield and NUE.展开更多
The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all...The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all testing temperatures but with varied Luders strains which do not change monoton ically with temperature. The martensitic transformation is simultaneously observed within the Ltiders band in varying degrees depending on the testing temperature. It is well verified that the martensitic transformation is not responsible for the formation of Luders band, and a reasonable explanation is given for the non-monotonic variation of Luders strain with increasing temperature.展开更多
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo...Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph...The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.展开更多
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ...Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.展开更多
Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane...Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane,which wraps around an axon to form a compact multi-layered sheath.Myelin is composed of a substantially higher proportion of lipids compared to other biological membranes and enriched in a small number of specialized proteins.展开更多
Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize ...Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize neuroscientifically-informed strategies of postlesional rehabilitation,and ultimately to develop innovative neuro-regenerative therapies.The term‘plasticity’,initially referring to the intrinsic propensity of neurons to modulate their synaptic transmission in a learning situation,was progressively transposed to brain injury research and clinical neurosciences.Indeed,in the event of brain damage,adaptive mechanisms of compensation allow a partial reshaping of the structure and activities of the central nervous system,thus permitting to some extent the maintenance of brain functions.展开更多
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金supported by the National Natural Science Foundation of China (No.50705067)the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070247013)
文摘On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.
基金sponsored by the Project of Shanghai Industrial Application of New and HighTechnologies in 2009
文摘Effects of deformation temperature on the mechanical properties and microstructure of lean duplex stainless steels B2102 and S32101 have been investigated. It was found that the strength decreased continuously with increases in temperature from -60 ℃ to 100 ℃. The strength of S32101 was higher than that of B2102 owing to its higher nitrogen content. Plasticity of B2102 increased with an increase in deformation temperature from - 60 ℃ and reached the optimal elongation ratio of 49% - 54% after deformation at 20 - 50 ^(2. Martensite transformation was observed during deformation due to the transformation-induced plasticity effect. The optimal elongation was achieved at deformation temperatures close to the Md(3O/50) temperatures of 62 ℃ and 6 ℃ for B2102 and S32101. respectively.
基金This work was financially supported by the National Natural Science Foundation of China (No.50334010).
文摘Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanical properties was studied through examining of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and a significant amount of stable retained austenite. Strain-induced transformation to martensite of retained austenite and TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holding led to cementite precipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%, and 25608 MPa.%, respectively.
基金supported by the Fundamental Research Funds for the Central Universities(N2009007 and N150902001)Foundation of Liaoning Educational Committee for key laboratory(LZ2015042)National Natural Science Foundation of China(21978045)。
文摘Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect can not get rid of the“soft”feature of the structure entirely,resulting in insufficient yield strength.Here,a Co_(x)Cr_(25)(AlFeNi)_(75-x) high-entropy alloy is designed.NiAl phase is used as strengthening component to improve yield strength,while TRIP effect ensures plasticity.Compared with the previous TRIP high-entropy alloy,its yield strength is nearly doubled,and the uniform elongation is more than 55%at room temperature.Furthermore,the corresponding multiphase microstructure evolution and deformation mechanisms are investigated.Significantly,stacking faults andΣ3 twin boundaries are confirmed to be the nucleation sites of HCP phase by HAADF-STEM.Ingenious composition design and proper heat treatment process make it a perfect combination of precipitation strengthening and transformationinduced plasticity,and thus guide design in the high-performance alloy.
基金supported by the National Natural Science Foundation of China(Grant No.51771024).
文摘The surface effect induced transformation texture during vacuum annealing of cold-rolled high manganese transformation-induced plasticity(TRIP)steels was studied.Due to Mn removal occurring at the surface layer,γ→δdiffusional phase transformation leads to the formation of hard pancake-shaped ferrite grains due to solution strengthening at the surface and the centre layer remains as austenite+martensite after annealing.In the case of slow heating,{112}/{111}<110>textures for the surface ferrite were strengthened with the increase in temperature and holding time,indicating an inheritance of rolling textures.By increasing the heating rate of annealing,the rotated cube texture was developed in surface ferrite.This kind of multiphase sandwich structure with hard ferrite surface layer and tough austenite dominant centre can increase tensile strength and should also improve deep drawing properties,therefore providing new possibility of controlling properties for the application of high manganese TRIP steel.
基金supported by the Agency for Defense Development(grant No.UE161030GD)the Korea University Grant for Dr.S.S.Sohnthe BK21 Plus Project for Center for Creative Industrial Materials。
文摘High-strength bainitic steels have created a lot of interest in recent times because of their excellent combination of strength,ductility,toughness,and high ballistic mass efficiency.Bainitic steels have great potential in the fabrication of steel armor plates.Although various approaches and methods have been conducted to utilize the retained austenite(RA)in the bainitic matrix to control mechanical properties,very few attempts have been conducted to improve ballistic performance utilizing transformationinduced plasticity(TRIP)mechanism.In this study,high-strength bainitic steels were designed by controlling the time of austempering process to have various volume fractions and stability of RA while maintaining high hardness.The dynamic compressive and ballistic impact tests were conducted,and the relation between the effects of TRIP on ballistic performance and the adiabatic shear band(ASB)formation was analyzed.Our results show for the first time that an active TRIP mechanism achieved from a large quantity of metastable RA can significantly enhance the ballistic performance of high-strength bainitic steels because of the improved resistance to ASB formation.Thus,the ballistic performance can be effectively improved by a very short austempering time,which suggests that the utilization of active TRIP behavior via tuning RA acts as a primary mechanism for significantly enhancing the ballistic performance of high-strength bainitic steels.
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174)to LB,Fondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618)to LB。
文摘Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
基金supported by the National Natural Science Foundation of China (31861143023,31872252)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201)。
文摘Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition.The gut microbiome,highly responsive to external environmental factors,plays a crucial role in host adaptability and may facilitate local adaptation within species.Concurrently,the genetic background of host populations influences gut microbiome composition,highlighting the bidirectional relationship between host and microbiome.Despite this,our understanding of gut microbiome plasticity and its role in host adaptability remains limited,particularly in reptiles.To clarify this issue,we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards(Phrynocephalus vlangalii)between high-altitude(2?600 m a.s.l.)and superhigh-altitude(3?600 m a.s.l.)environments on Dangjin Mountain of the Qinghai-Xizang Plateau,China.One year later,we assessed the phenotypes and gut microbiomes of their offspring.Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations.Highaltitude conditions increased diversity,and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments.Additionally,superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity,potentially linked to their lower growth rates.Overall,these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients.Furthermore,this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity,offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
基金supported by the National Natural Science Foundation of China(31860345 and 31460541)the Youth Innovative Top Talents Project of Shihezi University,China(CXBJ202003)the Third Division of Xinjiang Production and Construction Corps Scientific and Technological Achievements Transfer and Transformation Project,China(KJ2023CG03)。
文摘The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.However,the responses of yield,root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.An experiment was conducted from 2020-2022 with a high nitrogen use efficiency(high-NUE)cultivar(T-43)and a low-NUE cultivar(LX-3),and four nitrogen levels(0,150,300,and 450 kg ha^(-1))under drip irrigation in large fields.The aim was to study the relationships between root morphology,conformation,biomass,and endogenous hormone contents,yield and NUE.The results showed three main points:1)Under the same N application rate,compared with LX-3,the yield,N partial factor productivity(PFP),fine root length density(FRLD),shoot dry weight(SDW),root indole-3-acetic acid(IAA),and root zeatin and zeatin riboside(Z+ZR)of T-43 were significantly greater by11.4-18.9,11.3-13.5,11.6-15.7,9.9-31.1,6.1-48.1,and 22.8-73.6%,respectively,while the root-shoot ratio(RSR)and root abscisic acid(ABA)were significantly lower(P<0.05);2)nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents(P<0.05).Compared to N0,the yield,RLD,surface area density(SAD),root volume density(RVD),and root endogenous hormones(IAA,Z+ZR)were significantly increased in both cultivars under N2 by 61.6-71.6,64.2-74.0,69.9-105.6,6.67-9.91,54.0-67.8,and 51.4-58.9%,respectively.Compared with N3,the PFP and N agronomic efficiency(NAE)of nitrogen fertilizer under N2 increased by 52.3-62.4 and39.2-63.0%,respectively;3)the responses of root trait plasticity to the N environment significantly differed between the cultivars(P<0.05).Compared with LX-3,T-43 showed a longer root length and larger specific surface area,which is a strategy for adapting to changes in the nutrient environment.For the rice cultivar with high-NUE,the RSR was optimized by increasing the FRLD,root distribution in upper soil layers,and root endogenous hormones(IAA,Z+ZR)under suitable nitrogen conditions(N2).An efficient nutrient acquisition strategy can occur through root plasticity,leading to greater yield and NUE.
基金support from the Steel Joint Funds of the National Natural Science Foundation of China(Grant No.U1560204)Research Grants Council of Hong Kong(Grant Nos.HKU719712E,HKU712713E)Small Project Funding of HKU(Grant No.201409176053)
文摘The Luders deformation behavior in a medium Mn transformation induced plasticity (TRIP) steel is investigated at different temperatures ranging from 25 to 300 ℃. It demonstrates that the Ltiders band appears at all testing temperatures but with varied Luders strains which do not change monoton ically with temperature. The martensitic transformation is simultaneously observed within the Ltiders band in varying degrees depending on the testing temperature. It is well verified that the martensitic transformation is not responsible for the formation of Luders band, and a reasonable explanation is given for the non-monotonic variation of Luders strain with increasing temperature.
基金financial support from the National Natural Science Foundation of China(Nos.62104017 and 52072204)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
文摘The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.
基金supported by the National Natural Science Foundation of China,No.81971246 (to TM)Opening Foundation of Jiangsu Key Laboratory of Neurodegeneration,Nanjing Medical University,No.KF202204 (to LZ and SF)。
文摘Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
基金supported by on operating grant(#1038154) from the Multiple Sclerosis Society of Canada (to TEK)a Multiple Sclerosis Society of Canada Post-Doctoral Fellowship (to JDMG)。
文摘Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane,which wraps around an axon to form a compact multi-layered sheath.Myelin is composed of a substantially higher proportion of lipids compared to other biological membranes and enriched in a small number of specialized proteins.
文摘Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize neuroscientifically-informed strategies of postlesional rehabilitation,and ultimately to develop innovative neuro-regenerative therapies.The term‘plasticity’,initially referring to the intrinsic propensity of neurons to modulate their synaptic transmission in a learning situation,was progressively transposed to brain injury research and clinical neurosciences.Indeed,in the event of brain damage,adaptive mechanisms of compensation allow a partial reshaping of the structure and activities of the central nervous system,thus permitting to some extent the maintenance of brain functions.