In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar...This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.展开更多
In this paper, we introduce the concept of a group twisted tensor biproduct and give the necessary and su?cient conditions for the new object to be a Hopf group coalgebra.
Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (...Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.展开更多
The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf a...The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).展开更多
A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for t...A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.
基金This work is supported by National Natural Science Foundation of Chinaby the excellent doctorate fund of Nanjing agricultural university
文摘This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.
基金Supported by the Fund of the Key Disciplines of Xinjiang Uygur Autonomous Region(2012ZDXK03)
文摘In this paper, we introduce the concept of a group twisted tensor biproduct and give the necessary and su?cient conditions for the new object to be a Hopf group coalgebra.
基金The Research and Innovation Project for College Graduates of Jiangsu Province(No.CXLX_0094)the Natural Science Foundation of Chuzhou University(No.2010kj006Z)
文摘Let π be a group with a unit 1; H is a Hopf π- coalgebra and A is a right π-H-comodule algebra. First, the notion of a two-sided relative (A, H)-Hopf π-comodule is introduced; then it is obtained that Hom A H (M, N) H and HOMA(M, N) are isomorphic as right Hopf π-H-comodules, where Hom A H(M, N) denotes the space of right A-module fight H-comodule morphisms and HOMa (M, N) denotes the rational space of a space Hom A(M, N) of right A-module morphisms. Secondly, the structure theorem of endomorphism algebras of two-sided relative (A, H)-Hopf π--comodules is established; that is, End A H (M)#H and END A(M, N) are isomorphic as fight Hopf π-H-comodules and algebras.
基金Partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20060286006)the National Natural Science Foundation of China(10571026)the Southeast University Fund(XJ0707273).
文摘The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348).
文摘A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.