This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estima...This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented.展开更多
Zero-Inflated Poisson model has found a wide variety of applications in recent years in statistical analyses of count data, especially in count regression models. Zero-Inflated Poisson model is characterized in this p...Zero-Inflated Poisson model has found a wide variety of applications in recent years in statistical analyses of count data, especially in count regression models. Zero-Inflated Poisson model is characterized in this paper through a linear differential equation satisfied by its probability generating function [1] [2].展开更多
Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defect...Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate model. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.展开更多
A new two-parameter count distribution is derived starting with probabilistic arguments around the gamma function and the digamma function. This model is a generalization of the Poisson model with a noteworthy assortm...A new two-parameter count distribution is derived starting with probabilistic arguments around the gamma function and the digamma function. This model is a generalization of the Poisson model with a noteworthy assortment of qualities. For example, the mean is the main model parameter;any possible non-trivial variance or zero probability can be attained by changing the other model parameter;and all distributions are visually natural-shaped. Thus, exact modeling to any degree of over/under-dispersion or zero-inflation/deflation is possible.展开更多
Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson mo...Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson model (ZIDP), which is generalization of the ZIP model, is studied and the score tests for the significance of dis- persion and zero-inflation in ZIDP model are developed. Meanwhile, this work also develops homogeneous tests for dispersion and/or zero-inflation parameter, and corresponding score test statistics are obtained. One numer- ical example is given to illustrate our methodology and the properties of score test statistics are investigated through Monte Carlo simulations.展开更多
The occurrence of lightning-induced forest fires during a time period is count data featuring over-dispersion (i.e., variance is larger than mean) and a high frequency of zero counts. In this study, we used six gene...The occurrence of lightning-induced forest fires during a time period is count data featuring over-dispersion (i.e., variance is larger than mean) and a high frequency of zero counts. In this study, we used six generalized linear models to examine the relationship between the occurrence of lightning-induced forest fires and meteorological factors in the Northern Daxing'an Mountains of China. The six models included Poisson, negative binomial (NB), zero- inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), Poisson hurdle (PH), and negative binomial hurdle (NBH) models. Goodness-of-fit was compared and tested among the six models using Akaike information criterion (AIC), sum of squared errors, likelihood ratio test, and Vuong test. The predictive performance of the models was assessed and compared using independent validation data by the data-splitting method. Based on the model AIC, the ZINB model best fitted the fire occurrence data, followed by (in order of smaller AIC) NBH, ZIP, NB, PH, and Poisson models. The ZINB model was also best for pre- dicting either zero counts or positive counts (〉1). The two Hurdle models (PH and NBH) were better than ZIP, Poisson, and NB models for predicting positive counts, but worse than these three models for predicting zero counts. Thus, the ZINB model was the first choice for modeling the occurrence of lightning-induced forest fires in this study, which implied that the excessive zero counts of lightning- induced fires came from both structure and sampling zeros.展开更多
Road crash prediction models are very useful tools in highway safety, given their potential for determining both the crash frequency occurrence and the degree severity of crashes. Crash frequency refers to the predict...Road crash prediction models are very useful tools in highway safety, given their potential for determining both the crash frequency occurrence and the degree severity of crashes. Crash frequency refers to the prediction of the number of crashes that would occur on a specific road segment or intersection in a time period, while crash severity models generally explore the relationship between crash severity injury and the contributing factors such as driver behavior, vehicle characteristics, roadway geometry, and road-environment conditions. Effective interventions to reduce crash toll include design of safer infrastructure and incorporation of road safety features into land-use and transportation planning;improvement of vehicle safety features;improvement of post-crash care for victims of road crashes;and improvement of driver behavior, such as setting and enforcing laws relating to key risk factors, and raising public awareness. Despite the great efforts that transportation agencies put into preventive measures, the annual number of traffic crashes has not yet significantly decreased. For in-stance, 35,092 traffic fatalities were recorded in the US in 2015, an increase of 7.2% as compared to the previous year. With such a trend, this paper presents an overview of road crash prediction models used by transportation agencies and researchers to gain a better understanding of the techniques used in predicting road accidents and the risk factors that contribute to crash occurrence.展开更多
In this paper, a zero-and-one-inflated Poisson (ZOIP) model is studied. The maximum likelihoodestimation and the Bayesian estimation of the model parameters are obtained based on dataaugmentation method. A simulation ...In this paper, a zero-and-one-inflated Poisson (ZOIP) model is studied. The maximum likelihoodestimation and the Bayesian estimation of the model parameters are obtained based on dataaugmentation method. A simulation study based on proposed sampling algorithm is conductedto assess the performance of the proposed estimation for various sample sizes. Finally, two realdata-sets are analysed to illustrate the practicability of the proposed method.展开更多
选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究...选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究区域林火发生与气象因素关系的拟合结果较差(R2=0.215);Poisson和ZIP模型的拟合效果较好,具有较好的火灾次数预测能力,且ZIP模型的预测能力高于Poisson模型.运用AIC和Vuong检验方法对Poisson和ZIP模型的拟合水平进行进一步检验,表明ZIP模型的数据拟合度优于Poisson模型.展开更多
文摘This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented.
文摘Zero-Inflated Poisson model has found a wide variety of applications in recent years in statistical analyses of count data, especially in count regression models. Zero-Inflated Poisson model is characterized in this paper through a linear differential equation satisfied by its probability generating function [1] [2].
文摘Many researchers have discussed zero-inflated univariate distributions. These univariate models are not suitable, for modeling events that involve different types of counts or defects. To model several types of defects, multivariate Poisson model is one of the appropriate model. This can further be modified to incorporate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series distribution is also discussed.
文摘A new two-parameter count distribution is derived starting with probabilistic arguments around the gamma function and the digamma function. This model is a generalization of the Poisson model with a noteworthy assortment of qualities. For example, the mean is the main model parameter;any possible non-trivial variance or zero probability can be attained by changing the other model parameter;and all distributions are visually natural-shaped. Thus, exact modeling to any degree of over/under-dispersion or zero-inflation/deflation is possible.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11271193 and 11571073the Natural Science Foundation of Jiangsu Province under Grant No.BK20141326
文摘Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson model (ZIDP), which is generalization of the ZIP model, is studied and the score tests for the significance of dis- persion and zero-inflation in ZIDP model are developed. Meanwhile, this work also develops homogeneous tests for dispersion and/or zero-inflation parameter, and corresponding score test statistics are obtained. One numer- ical example is given to illustrate our methodology and the properties of score test statistics are investigated through Monte Carlo simulations.
基金funded by Asia–Pacific Forests Net(APFNET/2010/FPF/001)National Natural Science Foundation of China(Grant No.31400552)
文摘The occurrence of lightning-induced forest fires during a time period is count data featuring over-dispersion (i.e., variance is larger than mean) and a high frequency of zero counts. In this study, we used six generalized linear models to examine the relationship between the occurrence of lightning-induced forest fires and meteorological factors in the Northern Daxing'an Mountains of China. The six models included Poisson, negative binomial (NB), zero- inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), Poisson hurdle (PH), and negative binomial hurdle (NBH) models. Goodness-of-fit was compared and tested among the six models using Akaike information criterion (AIC), sum of squared errors, likelihood ratio test, and Vuong test. The predictive performance of the models was assessed and compared using independent validation data by the data-splitting method. Based on the model AIC, the ZINB model best fitted the fire occurrence data, followed by (in order of smaller AIC) NBH, ZIP, NB, PH, and Poisson models. The ZINB model was also best for pre- dicting either zero counts or positive counts (〉1). The two Hurdle models (PH and NBH) were better than ZIP, Poisson, and NB models for predicting positive counts, but worse than these three models for predicting zero counts. Thus, the ZINB model was the first choice for modeling the occurrence of lightning-induced forest fires in this study, which implied that the excessive zero counts of lightning- induced fires came from both structure and sampling zeros.
文摘Road crash prediction models are very useful tools in highway safety, given their potential for determining both the crash frequency occurrence and the degree severity of crashes. Crash frequency refers to the prediction of the number of crashes that would occur on a specific road segment or intersection in a time period, while crash severity models generally explore the relationship between crash severity injury and the contributing factors such as driver behavior, vehicle characteristics, roadway geometry, and road-environment conditions. Effective interventions to reduce crash toll include design of safer infrastructure and incorporation of road safety features into land-use and transportation planning;improvement of vehicle safety features;improvement of post-crash care for victims of road crashes;and improvement of driver behavior, such as setting and enforcing laws relating to key risk factors, and raising public awareness. Despite the great efforts that transportation agencies put into preventive measures, the annual number of traffic crashes has not yet significantly decreased. For in-stance, 35,092 traffic fatalities were recorded in the US in 2015, an increase of 7.2% as compared to the previous year. With such a trend, this paper presents an overview of road crash prediction models used by transportation agencies and researchers to gain a better understanding of the techniques used in predicting road accidents and the risk factors that contribute to crash occurrence.
基金The research is supported by the Natural Science Foundation of China(Nos.11271136,81530086,11671303,11201345)the 111 Project of China(No.B14019)+5 种基金the Natural Science Foundation of Zhejiang Province(No.LY15G010006)the China Postdoctoral Science Foundation(No.2015M572598)National Natural Science Foundation of China(CN)[grant number 11671303],[grant number 11201345]:Ministry of Education of the People’s Republic of China(CN)[grant number B14019]China Postdoctoral Science Foundation(CN)[grant number 2015M572598]National Natural Science Foundation of China(CN)[grant number 11271136],[grant number 81530086]Natural Science Foundation of Zhejiang Province(CN)[grant number LY15G010006].
文摘In this paper, a zero-and-one-inflated Poisson (ZOIP) model is studied. The maximum likelihoodestimation and the Bayesian estimation of the model parameters are obtained based on dataaugmentation method. A simulation study based on proposed sampling algorithm is conductedto assess the performance of the proposed estimation for various sample sizes. Finally, two realdata-sets are analysed to illustrate the practicability of the proposed method.
文摘选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究区域林火发生与气象因素关系的拟合结果较差(R2=0.215);Poisson和ZIP模型的拟合效果较好,具有较好的火灾次数预测能力,且ZIP模型的预测能力高于Poisson模型.运用AIC和Vuong检验方法对Poisson和ZIP模型的拟合水平进行进一步检验,表明ZIP模型的数据拟合度优于Poisson模型.