This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the fle...Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.展开更多
Assessing the benefits and costs of digitalization in the energy industry is a complex issue.Traditional cost-benefit analysis(CBA)might encounter problems in addressing uncertainties,dynamic stakeholder interactions,...Assessing the benefits and costs of digitalization in the energy industry is a complex issue.Traditional cost-benefit analysis(CBA)might encounter problems in addressing uncertainties,dynamic stakeholder interactions,and feedback loops arising out of the evolving nature of digitalization.This paper introduces a methodological framework to help address the intricate inter connections between digital applications and business models in the energy industry.The proposed framework leverages system dynamics to achieve two primary objectives.It investigates how digitalization generally influences the value proposi-tion,value capture,and value creation dimensions of business models.It also quantifies the financial and social impacts of digitalization from a dynamic perspective.The proposed dynamic CBA allows for a more precise quantification of the benefits and costs,associated with evidence-based decision-making.Findings from an illustrative case study challenge the static assumptions of conventional methods.These methods often presume continuous operation,neglecting reinvestment and operational feedback loops,and resulting in negative net present values.Conversely,the outcomes of the proposed method indicate positive net present values when accounting for factors such as reinvestment rates and the will-ingness to invest in digitalization projects.The principles outlined in this paper can enable a more accu-rate assessment of digitalization projects,thus catalyzing the development of new CBA applications and guidelines for digitalization.展开更多
One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ...One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid en...The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.展开更多
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model...During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.展开更多
The effectiveness of dual-doping as a method of improving the conductivity of sulfide solid electrolytes(SEs)is not in doubt;however,the atomic-level mechanisms underpinning these enhancements remain elusive.In this s...The effectiveness of dual-doping as a method of improving the conductivity of sulfide solid electrolytes(SEs)is not in doubt;however,the atomic-level mechanisms underpinning these enhancements remain elusive.In this study,we investigate the atomic mechanisms associated with the high ionic conductivity of the Li_(7)P_(3)S_(11)(LPS)SE and its response to Ag/Cl dual dopants.Synthesis and electrochemical characterizations show that the 0.2 M AgCl-doped LPS(Li_(6.8)P_(3)Ag_(0.1)S_(10.9)Cl_(0.1))exhibited an over 80%improvement in ionic conductivity compared with the undoped LPS.The atomic-level structures responsible for the enhanced conductivity were generated by a set of experiment and simulation techniques:synchrotron X-ray diffractometry,Rietveld refinement,density functional theory,and artificial neural network-based molecular dynamics simulations.This thorough characterization highlights the role of dual dopants in altering the structure and ionic conductivity.We found that the PS_(4) and P_(2)S_(7) structural motifs of LPS undergo transformation into various PS_(x) substructures.These changes in the substructures,in conjunction with the paddle-wheel effect,enable rapid Li migration.The dopant atoms serve to enhance the flexibility of PS_(4)–P_(2)S_(7) polyhedral frameworks,consequently enhancing the ionic conductivity.Our study elucidates a clear structure–conductivity relationship for the dual-doped LPS,providing a fundamental guideline for the development of sulfide SEs with superior conductivity.展开更多
The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invar...The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.展开更多
Because the deployable structures are complex multi-loop structures and methods of derivation which lead to simpler kinematic and dynamic equations of motion are the subject of research effort, the kinematics and dyna...Because the deployable structures are complex multi-loop structures and methods of derivation which lead to simpler kinematic and dynamic equations of motion are the subject of research effort, the kinematics and dynamics of deployable structures with scissor-like-elements are presented based on screw theory and the principle of virtual work respectively. According to the geometric characteristic of the deployable structure examined, the basic structural unit is the common scissor-like-element(SLE). First, a spatial deployable structure, comprised of three SLEs, is defined, and the constraint topology graph is obtained. The equations of motion are then derived based on screw theory and the geometric nature of scissor elements. Second, to develop the dynamics of the whole deployable structure, the local coordinates of the SLEs and the Jacobian matrices of the center of mass of the deployable structure are derived. Then, the equivalent forces are assembled and added in the equations of motion based on the principle of virtual work. Finally, dynamic behavior and unfolded process of the deployable structure are simulated. Its figures of velocity, acceleration and input torque are obtained based on the simulate results. Screw theory not only provides an efficient solution formulation and theory guidance for complex multi-closed loop deployable structures, but also extends the method to solve dynamics of deployable structures. As an efficient mathematical tool, the simper equations of motion are derived based on screw theory.展开更多
It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight...It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.展开更多
Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-sl...Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device.展开更多
Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platfor...Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.展开更多
Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(...Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.展开更多
In this paper, the node movement analysis of the levers of band saw tightening system is developed. A group of theoretical displacement and distortion equations of levers are presented using the Lagrange’s equation. ...In this paper, the node movement analysis of the levers of band saw tightening system is developed. A group of theoretical displacement and distortion equations of levers are presented using the Lagrange’s equation. This could be the basis for the future research in the field of band saw’s tightening system dynamics analysis.展开更多
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco...Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.展开更多
Factor analysis of annual dynamics from 1879 to 2017 was carried out by the method of identification of stable regularities:maximum,minimum and average air temperature of Central England according to HadCET.The sample...Factor analysis of annual dynamics from 1879 to 2017 was carried out by the method of identification of stable regularities:maximum,minimum and average air temperature of Central England according to HadCET.The sample capacity was 139 rows.In factor analysis,time is excluded,and it acts only as a system-forming factor that ensures the relationship between the three parameters of climate and weather.Therefore,the adequacy of the dynamics models is taken into account in the diagonal cells of the correlation matrix.In addition to time,different lists of objects are possible in factor analysis.The coefficient of correlation variation,that is,a measure of the functional relationship between the parameters of the system(annual weather at the weather station in Central England)is 0.8230 for trends,0.8603 taking into account the annual dynamics of the four-membered model obtained from the computational capabilities of the software environment CurveExpert-1.40,and 0.9578 for the full up to the error of measurement wavelet analysis of the dynamics of the values of three factors.In all three methods of factor analysis,the meteorological parameter«average Annual temperature»was in the first place as the influencing variable,the«Maximum temperature»was in the second place,and the«Minimum temperature»was in the third place.As the dependent measure in these areas there are three kinds of temperature.The comparison shows that among the binary relations between the three temperatures,the average temperature on the maximum air temperature in the surface layer of the atmosphere has the greatest influence on the correlation coefficient 0.9765.At the same time,all six equations refer to strong connections,so there is a high quantum certainty between the three types of temperature.But when predicting the most meaningful essence showed the maximum temperature.展开更多
Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a met...Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a method for dy- namics analysis and simulation of the Swiss level escapement. First, the Swiss lever escapement mechanism is introduced and its motion in a half-period is divided into four sections. Then the dynamics model is developed using impulsive differ- ential equations and the simulation result is obtained by MATIAB. A watch called Seiko7OO9a is taken as an example. The simulation result shows the dynamic behavior in terms of the relationship among displacement, angle and time. The spring constant and balance wheel inertia that governed the timekeeping accuracy are also discussed.展开更多
In this paper we study the dynamics and stability of a two-dimensional model for the vibrations of the LiCN molecule making use of the Riemannian geometry via the Jacobi-Levi-Civita equations applied to the Jacobi met...In this paper we study the dynamics and stability of a two-dimensional model for the vibrations of the LiCN molecule making use of the Riemannian geometry via the Jacobi-Levi-Civita equations applied to the Jacobi metric. The Stability Geometrical Indicator for short times is calculated to locate regular and chaotic trajectories as the relative extrema of this indicator. Only trajectories with initial conditions at the boundary of the Hill’s region are considered to characterize the dynamics of the system. The importance of the curvature of this boundary for the stability of trajectories bouncing on it is also discussed.展开更多
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t...Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金Supported by the National Natural Science Foundation of China under Grant No.51965032the Natural Science Foundation of Gansu Province of China under Grant No.22JR5RA319+2 种基金the Excellent Doctoral Student Foundation of Gansu Province of China under Grant No.23JRRA842the Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance under Grant No.GAMRC2023YB05the Key Research and Development Project of Lanzhou Jiaotong University under Grant No.LZJTUZDYF2302.
文摘Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot.
基金conducted as part of the project Innovative Tools for Cyber-Physical Energy Systems(InnoCyPES)received funding from the European Union’s Horizon 2020 research and innovation pro-gram under the Marie Skłodowska-Curie(956433).
文摘Assessing the benefits and costs of digitalization in the energy industry is a complex issue.Traditional cost-benefit analysis(CBA)might encounter problems in addressing uncertainties,dynamic stakeholder interactions,and feedback loops arising out of the evolving nature of digitalization.This paper introduces a methodological framework to help address the intricate inter connections between digital applications and business models in the energy industry.The proposed framework leverages system dynamics to achieve two primary objectives.It investigates how digitalization generally influences the value proposi-tion,value capture,and value creation dimensions of business models.It also quantifies the financial and social impacts of digitalization from a dynamic perspective.The proposed dynamic CBA allows for a more precise quantification of the benefits and costs,associated with evidence-based decision-making.Findings from an illustrative case study challenge the static assumptions of conventional methods.These methods often presume continuous operation,neglecting reinvestment and operational feedback loops,and resulting in negative net present values.Conversely,the outcomes of the proposed method indicate positive net present values when accounting for factors such as reinvestment rates and the will-ingness to invest in digitalization projects.The principles outlined in this paper can enable a more accu-rate assessment of digitalization projects,thus catalyzing the development of new CBA applications and guidelines for digitalization.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA040202)
文摘One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
基金supported by the National Natural Science Foundation of China(Grant No.52107087).
文摘The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.
基金National Natural Science Foundation of China(Nos.51767017,51867015,62063016)Fundamental Research Innovation Group Project of Gansu Province(18JR3RA133)Gansu Provincial Science and Technology Program(20JR5RA048,20JR10RA177).
文摘During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.
基金National Research Foundation of Korea,Grant/A ward Numbers:MEST,NRF-2021R1A2C2009596Engineeringand Physical Sciences Research Council,Grant/A ward Numbers:EP/R029431,EP/P020194,EP/T022213+1 种基金Korea government(Ministry of Science and ICT,MSIT),Grant/Award Number:RS-2023-00236572European Research Council,ERC,Grant/Award Numbers:EP/R029431,EP/P020194,EP/T022213。
文摘The effectiveness of dual-doping as a method of improving the conductivity of sulfide solid electrolytes(SEs)is not in doubt;however,the atomic-level mechanisms underpinning these enhancements remain elusive.In this study,we investigate the atomic mechanisms associated with the high ionic conductivity of the Li_(7)P_(3)S_(11)(LPS)SE and its response to Ag/Cl dual dopants.Synthesis and electrochemical characterizations show that the 0.2 M AgCl-doped LPS(Li_(6.8)P_(3)Ag_(0.1)S_(10.9)Cl_(0.1))exhibited an over 80%improvement in ionic conductivity compared with the undoped LPS.The atomic-level structures responsible for the enhanced conductivity were generated by a set of experiment and simulation techniques:synchrotron X-ray diffractometry,Rietveld refinement,density functional theory,and artificial neural network-based molecular dynamics simulations.This thorough characterization highlights the role of dual dopants in altering the structure and ionic conductivity.We found that the PS_(4) and P_(2)S_(7) structural motifs of LPS undergo transformation into various PS_(x) substructures.These changes in the substructures,in conjunction with the paddle-wheel effect,enable rapid Li migration.The dopant atoms serve to enhance the flexibility of PS_(4)–P_(2)S_(7) polyhedral frameworks,consequently enhancing the ionic conductivity.Our study elucidates a clear structure–conductivity relationship for the dual-doped LPS,providing a fundamental guideline for the development of sulfide SEs with superior conductivity.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375420,51105322)
文摘The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.
基金Supported by National Natural Science Foundation of China(Grant No.51175422)
文摘Because the deployable structures are complex multi-loop structures and methods of derivation which lead to simpler kinematic and dynamic equations of motion are the subject of research effort, the kinematics and dynamics of deployable structures with scissor-like-elements are presented based on screw theory and the principle of virtual work respectively. According to the geometric characteristic of the deployable structure examined, the basic structural unit is the common scissor-like-element(SLE). First, a spatial deployable structure, comprised of three SLEs, is defined, and the constraint topology graph is obtained. The equations of motion are then derived based on screw theory and the geometric nature of scissor elements. Second, to develop the dynamics of the whole deployable structure, the local coordinates of the SLEs and the Jacobian matrices of the center of mass of the deployable structure are derived. Then, the equivalent forces are assembled and added in the equations of motion based on the principle of virtual work. Finally, dynamic behavior and unfolded process of the deployable structure are simulated. Its figures of velocity, acceleration and input torque are obtained based on the simulate results. Screw theory not only provides an efficient solution formulation and theory guidance for complex multi-closed loop deployable structures, but also extends the method to solve dynamics of deployable structures. As an efficient mathematical tool, the simper equations of motion are derived based on screw theory.
基金supported by National Natural Science Foundation of China(Grant No.61075099)
文摘It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
基金Supported by National Natural Science Foundation of China(Grant No.51475139)
文摘Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device.
基金Project(2014QNB18) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CBO46300) supported by the National Basic Research Program of China
文摘Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.
基金support of the U.S. National Science Foundation (awards 8206992, 8906869, 9405933, 9909947, 0948585 to S.P. Hubbell)the John D. and Catherine D. McArthur Foundation+1 种基金the Smithsonian Tropical Research Institutesupported by research grant #7738 from the Natural Sciences and Engineering Research Council of Canada (NSERC) to P. Legendre
文摘Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.
文摘In this paper, the node movement analysis of the levers of band saw tightening system is developed. A group of theoretical displacement and distortion equations of levers are presented using the Lagrange’s equation. This could be the basis for the future research in the field of band saw’s tightening system dynamics analysis.
基金Supported by Zhejiang Province Foundation for Distinguished Young Scholars of China(Grant No.LR18E050003)National Natural Science Foundation of China(Grant Nos.51975523,51475424,51905481)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906).
文摘Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.
文摘Factor analysis of annual dynamics from 1879 to 2017 was carried out by the method of identification of stable regularities:maximum,minimum and average air temperature of Central England according to HadCET.The sample capacity was 139 rows.In factor analysis,time is excluded,and it acts only as a system-forming factor that ensures the relationship between the three parameters of climate and weather.Therefore,the adequacy of the dynamics models is taken into account in the diagonal cells of the correlation matrix.In addition to time,different lists of objects are possible in factor analysis.The coefficient of correlation variation,that is,a measure of the functional relationship between the parameters of the system(annual weather at the weather station in Central England)is 0.8230 for trends,0.8603 taking into account the annual dynamics of the four-membered model obtained from the computational capabilities of the software environment CurveExpert-1.40,and 0.9578 for the full up to the error of measurement wavelet analysis of the dynamics of the values of three factors.In all three methods of factor analysis,the meteorological parameter«average Annual temperature»was in the first place as the influencing variable,the«Maximum temperature»was in the second place,and the«Minimum temperature»was in the third place.As the dependent measure in these areas there are three kinds of temperature.The comparison shows that among the binary relations between the three temperatures,the average temperature on the maximum air temperature in the surface layer of the atmosphere has the greatest influence on the correlation coefficient 0.9765.At the same time,all six equations refer to strong connections,so there is a high quantum certainty between the three types of temperature.But when predicting the most meaningful essence showed the maximum temperature.
文摘Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a method for dy- namics analysis and simulation of the Swiss level escapement. First, the Swiss lever escapement mechanism is introduced and its motion in a half-period is divided into four sections. Then the dynamics model is developed using impulsive differ- ential equations and the simulation result is obtained by MATIAB. A watch called Seiko7OO9a is taken as an example. The simulation result shows the dynamic behavior in terms of the relationship among displacement, angle and time. The spring constant and balance wheel inertia that governed the timekeeping accuracy are also discussed.
文摘In this paper we study the dynamics and stability of a two-dimensional model for the vibrations of the LiCN molecule making use of the Riemannian geometry via the Jacobi-Levi-Civita equations applied to the Jacobi metric. The Stability Geometrical Indicator for short times is calculated to locate regular and chaotic trajectories as the relative extrema of this indicator. Only trajectories with initial conditions at the boundary of the Hill’s region are considered to characterize the dynamics of the system. The importance of the curvature of this boundary for the stability of trajectories bouncing on it is also discussed.
文摘Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.