In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
Recently Guo introduced integrated Meyer -Konig and Zeller operators and studied the rate of convergence for function of bounded variation. In this note we give a sharp estimate for these operators.
By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive...By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.展开更多
In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches ...In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.展开更多
For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients...For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.展开更多
This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are ...This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.展开更多
A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obt...A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.展开更多
Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabc...Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).展开更多
We establish the concept of shapes of functions by using partial differential inequalites. Our definition about shapes includes some usual shapes such as convex,subharmonic,etc.,and gives many new shapes of functions....We establish the concept of shapes of functions by using partial differential inequalites. Our definition about shapes includes some usual shapes such as convex,subharmonic,etc.,and gives many new shapes of functions.The main results show that the shape preserving approxi- mation has close relation to the shape preserving extension.One of our main results shows that if f∈C(Ω)has some shape defined by our definition,then f can be uniformly approximated by polynomials P_n ∈p_n(n∈N)which have the same shape in Ω,and the degree of the ap- proximation is Cω(f,n^(-β))with constants C,β>0.展开更多
Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the converg...Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_...In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_(n,σ)(f)≤‖σ‖ω(f,1/(n+1)).For the Heaviside function H(x),we prove that d_(n,H)(f)≤ω(f,1/(2(n+1))). If f is a continuous funnction of bounded variation,we prove that d_(n,σ)(f)≤‖σ‖/(n+1)V(f)and d_(n,H)(f)≤ 1/(2(n+1))V(f).For he Heaviside function,the coefficient 1 and the approximation orders are the best possible.We compare these results with the classical Jackson and Bernstein theorems,and make some conjec- tures for further study.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is f...In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail.展开更多
This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector par...This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.展开更多
A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simp...A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simple, quantitatively accurate in a wide range of coexistence phase and external field parameters. Especially, the DFT approach only needs a second order direct correlation function (DCF) of the coexistence bulk fluid as input, and is therefore applicable to the subcritical temperature region. The present theoretical method can be regarded as a non-uniform counterpart of the thermodynamic perturbation theory, in which it is not at the level of the free energy but at the level of the second order DCF.the National Natural Science Foundation of China (No. 20546004) and the Natural Science Foundation of Education Department of Hunan Province (No.04C711).展开更多
A two-point adaptive nonlinear approximation (referred to as TANA4) suitable for reliability analysis is proposed. Transformed and normalized random variables in probabilistic analysis could become negative and pose...A two-point adaptive nonlinear approximation (referred to as TANA4) suitable for reliability analysis is proposed. Transformed and normalized random variables in probabilistic analysis could become negative and pose a challenge to the earlier developed two-point approxi- mations; thus a suitable method that can address this issue is needed. In the method proposed, the nonlinearity indices of intervening variables are limited to integers. Then, on the basis of the present method, an improved sequential approximation of the limit state surface for reliability analysis is presented. With the gradient projection method, the data points for the limit state surface approximation are selected on the original limit state surface, which e?ectively repre- sents the nature of the original response function. On the basis of this new approximation, the reliability is estimated using a ?rst-order second-moment method. Various examples, including both structural and non-structural ones, are presented to show the e?ectiveness of the method proposed.展开更多
This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ab...This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ability, and adaptability greatly in learning processes of networks. The simulation results have been shown that the method can be applied to the modeling and identification of complex dynamic control systems.展开更多
This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simpl...This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.展开更多
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
基金Research supported by Council of Scientific and Industrial Research, India under award no.9/143(163)/91-EER-
文摘Recently Guo introduced integrated Meyer -Konig and Zeller operators and studied the rate of convergence for function of bounded variation. In this note we give a sharp estimate for these operators.
文摘By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
基金This research is suported by National Science foundation Grant.
文摘In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.
文摘For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.
文摘This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.
文摘A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.
文摘Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).
文摘We establish the concept of shapes of functions by using partial differential inequalites. Our definition about shapes includes some usual shapes such as convex,subharmonic,etc.,and gives many new shapes of functions.The main results show that the shape preserving approxi- mation has close relation to the shape preserving extension.One of our main results shows that if f∈C(Ω)has some shape defined by our definition,then f can be uniformly approximated by polynomials P_n ∈p_n(n∈N)which have the same shape in Ω,and the degree of the ap- proximation is Cω(f,n^(-β))with constants C,β>0.
基金The work is supported by Project 69 with Ministry of ScienceEducation, Bulgaria.
文摘Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_(n,σ)(f)≤‖σ‖ω(f,1/(n+1)).For the Heaviside function H(x),we prove that d_(n,H)(f)≤ω(f,1/(2(n+1))). If f is a continuous funnction of bounded variation,we prove that d_(n,σ)(f)≤‖σ‖/(n+1)V(f)and d_(n,H)(f)≤ 1/(2(n+1))V(f).For he Heaviside function,the coefficient 1 and the approximation orders are the best possible.We compare these results with the classical Jackson and Bernstein theorems,and make some conjec- tures for further study.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
基金Project supported by the National Natural Science Foundation of China (Grant No 20673150)
文摘In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a nonuniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail.
基金Supported by the National Natural Science Foundation of China(61573378)the Fundamental Research Funds for the Central Universities(15CX06064A)
文摘This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.
文摘A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simple, quantitatively accurate in a wide range of coexistence phase and external field parameters. Especially, the DFT approach only needs a second order direct correlation function (DCF) of the coexistence bulk fluid as input, and is therefore applicable to the subcritical temperature region. The present theoretical method can be regarded as a non-uniform counterpart of the thermodynamic perturbation theory, in which it is not at the level of the free energy but at the level of the second order DCF.the National Natural Science Foundation of China (No. 20546004) and the Natural Science Foundation of Education Department of Hunan Province (No.04C711).
基金Project supported by the the National Natural Science Foundation of China (No.10072016) and the Excellent Young Teachers Program of MOE of China.
文摘A two-point adaptive nonlinear approximation (referred to as TANA4) suitable for reliability analysis is proposed. Transformed and normalized random variables in probabilistic analysis could become negative and pose a challenge to the earlier developed two-point approxi- mations; thus a suitable method that can address this issue is needed. In the method proposed, the nonlinearity indices of intervening variables are limited to integers. Then, on the basis of the present method, an improved sequential approximation of the limit state surface for reliability analysis is presented. With the gradient projection method, the data points for the limit state surface approximation are selected on the original limit state surface, which e?ectively repre- sents the nature of the original response function. On the basis of this new approximation, the reliability is estimated using a ?rst-order second-moment method. Various examples, including both structural and non-structural ones, are presented to show the e?ectiveness of the method proposed.
文摘This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ability, and adaptability greatly in learning processes of networks. The simulation results have been shown that the method can be applied to the modeling and identification of complex dynamic control systems.
基金Supported by National Natural Science Foundation of China( 699730 1 0,1 0 2 71 0 2 2 )
文摘This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.