This paper proposes an 8 bit asynchronous successive approximation register ADC for wireless transceivers. A split capacitor DAC is used to reduce power and area consumption and the value of the split capacitor is cal...This paper proposes an 8 bit asynchronous successive approximation register ADC for wireless transceivers. A split capacitor DAC is used to reduce power and area consumption and the value of the split capacitor is calculated theoretically to ensure linearity. Asynchronous control logic is proposed to eliminate the high internal clocks and significantly speeds up the successive approximation algorithm. An on-chip reference with a fully integrated buffer and decoupling capacitor is adopted for avoiding an extra pin for the off-chip reference. The prototype, fabricated in UMC 0.18 um CMOS technology, achieves an effective number of bits of 7.64 bits at a sampling frequency of 12 MS/s. The total power consumption is 0.918 mW for a 1.8 V supply, while the onchip reference consumes 53% of the total power. It achieves a figure of merit of 180 fJ/conv-step, excluding the reference's power consumption.展开更多
This paper proposes a single channel, 6-bit 230-MS/s asynchronous successive approximation register analog-to-digital converter (ADC) in an SMIC 65 nm CMOS technology. Through adopting the modified 2 bits/stage asyn...This paper proposes a single channel, 6-bit 230-MS/s asynchronous successive approximation register analog-to-digital converter (ADC) in an SMIC 65 nm CMOS technology. Through adopting the modified 2 bits/stage asynchronous control logic, the presented ADC actualizes a peak 40.90-dB spurious-free dynamic range and 29.05-dB signal-to-noise and distortion ratio at 230-MS/s sampling rate. Utilizing the dynamic comparator without the preamplifier, this work attains low-power design with only 0.93 mW power consumption and accomplishes a figure of merit of 174.67 fJ/step at 1 V supply voltage.展开更多
基金Project supported by the Major National Science & Technology Program of China(No.2010ZX03001-004-02)
文摘This paper proposes an 8 bit asynchronous successive approximation register ADC for wireless transceivers. A split capacitor DAC is used to reduce power and area consumption and the value of the split capacitor is calculated theoretically to ensure linearity. Asynchronous control logic is proposed to eliminate the high internal clocks and significantly speeds up the successive approximation algorithm. An on-chip reference with a fully integrated buffer and decoupling capacitor is adopted for avoiding an extra pin for the off-chip reference. The prototype, fabricated in UMC 0.18 um CMOS technology, achieves an effective number of bits of 7.64 bits at a sampling frequency of 12 MS/s. The total power consumption is 0.918 mW for a 1.8 V supply, while the onchip reference consumes 53% of the total power. It achieves a figure of merit of 180 fJ/conv-step, excluding the reference's power consumption.
基金supported by the National Science Foundation for Young Scientists of China(No.61306029)the National High Technology Research and Development Program of China(No.2013AA014103)
文摘This paper proposes a single channel, 6-bit 230-MS/s asynchronous successive approximation register analog-to-digital converter (ADC) in an SMIC 65 nm CMOS technology. Through adopting the modified 2 bits/stage asynchronous control logic, the presented ADC actualizes a peak 40.90-dB spurious-free dynamic range and 29.05-dB signal-to-noise and distortion ratio at 230-MS/s sampling rate. Utilizing the dynamic comparator without the preamplifier, this work attains low-power design with only 0.93 mW power consumption and accomplishes a figure of merit of 174.67 fJ/step at 1 V supply voltage.