An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstr...An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.展开更多
An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each ite...An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.展开更多
Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on...Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.展开更多
Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for sol...Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for solving NCCP problems when the objective function and constraints are convex but may be nonsmooth.At each iteration,VAPP generates a nonlinear approximation of the primal augmented Lagrangian model.The approximation incorporates both linearization and a distance-like proximal term,and then the iterations of VAPP are shown to possess a decomposition property for NCCP.Motivated by recent applications in big data analytics,there has been a growing interest in the convergence rate analysis of algorithms with parallel computing capabilities for large scale optimization problems.We establish O(1/t)convergence rate towards primal optimality,feasibility and dual optimality.By adaptively setting parameters at different iterations,we show an O(1/t2)rate for the strongly convex case.Finally,we discuss some issues in the implementation of VAPP.展开更多
Firstly,this paper proposes a generalized log-determinant optimization model with the purpose of estimating the high-dimensional sparse inverse covariance matrices.Under the normality assumption,the zero components in...Firstly,this paper proposes a generalized log-determinant optimization model with the purpose of estimating the high-dimensional sparse inverse covariance matrices.Under the normality assumption,the zero components in the inverse covariance matrices represent the conditional independence between pairs of variables given all the other variables.The generalized model considered in this study,because of the setting of the eigenvalue bounded constraints,covers a large number of existing estimators as special cases.Secondly,rather than directly tracking the challenging optimization problem,this paper uses a couple of alternating direction methods of multipliers(ADMM)to solve its dual model where 5 separable structures are contained.The first implemented algorithm is based on a single Gauss–Seidel iteration,but it does not necessarily converge theoretically.In contrast,the second algorithm employs the symmetric Gauss–Seidel(sGS)based ADMM which is equivalent to the 2-block iterative scheme from the latest sGS decomposition theorem.Finally,we do numerical simulations using the synthetic data and the real data set which show that both algorithms are very effective in estimating high-dimensional sparse inverse covariance matrix.展开更多
文摘An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.
文摘An augmented Lagrangian trust region method with a bi=object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.
基金supported by National Natural Science Foundation of China(No.52107117)。
文摘Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.
基金This research was supported by the National Natural Science Foundation of China(Nos.71471112 and 71871140).
文摘Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for solving NCCP problems when the objective function and constraints are convex but may be nonsmooth.At each iteration,VAPP generates a nonlinear approximation of the primal augmented Lagrangian model.The approximation incorporates both linearization and a distance-like proximal term,and then the iterations of VAPP are shown to possess a decomposition property for NCCP.Motivated by recent applications in big data analytics,there has been a growing interest in the convergence rate analysis of algorithms with parallel computing capabilities for large scale optimization problems.We establish O(1/t)convergence rate towards primal optimality,feasibility and dual optimality.By adaptively setting parameters at different iterations,we show an O(1/t2)rate for the strongly convex case.Finally,we discuss some issues in the implementation of VAPP.
基金the National Natural Science Foundation of China(No.11971149).
文摘Firstly,this paper proposes a generalized log-determinant optimization model with the purpose of estimating the high-dimensional sparse inverse covariance matrices.Under the normality assumption,the zero components in the inverse covariance matrices represent the conditional independence between pairs of variables given all the other variables.The generalized model considered in this study,because of the setting of the eigenvalue bounded constraints,covers a large number of existing estimators as special cases.Secondly,rather than directly tracking the challenging optimization problem,this paper uses a couple of alternating direction methods of multipliers(ADMM)to solve its dual model where 5 separable structures are contained.The first implemented algorithm is based on a single Gauss–Seidel iteration,but it does not necessarily converge theoretically.In contrast,the second algorithm employs the symmetric Gauss–Seidel(sGS)based ADMM which is equivalent to the 2-block iterative scheme from the latest sGS decomposition theorem.Finally,we do numerical simulations using the synthetic data and the real data set which show that both algorithms are very effective in estimating high-dimensional sparse inverse covariance matrix.