In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algo...Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.展开更多
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
文摘Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.