BACKGROUND ; Phycecyanin can anti-oxidize and clear free radial. Whether its protective effect on brain is related to Caspase-3, the promoter and operator of apoptosis, is highly concerned. OBJECTIVE: To observe phyc...BACKGROUND ; Phycecyanin can anti-oxidize and clear free radial. Whether its protective effect on brain is related to Caspase-3, the promoter and operator of apoptosis, is highly concerned. OBJECTIVE: To observe phycocyanin for protecting nerve function and reducing the size of cerebral infarction of rats with brain ischemia-reperfusion and its effect on the expression of Cespese-3 mRNA. DESIGN : A randomized controlled experiment. SETTING : Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University MATERIALS: Totally 84 adult healthy female Wistar rats, weighing 210 to 250 g, of clean grade, were provided by the Animal Experimental Center of Shandong University. Phycocyanin (Institute of Oceanography of Chinese Academy of Sciences) was used. METHODS: This experiment was carried out in the Key Laboratory for Prevention and Treatment of Brain Diseases during May to December 2005. ① The rats were randomized into sham-operation group (n=4), control group (n=-40) and phycocyanin-treated group (n=-40). Middle cerebral artery occlusion/reperfusion (MACO/R) models were created on the rats of control and phycocyanin-treated groups with suture-occluded method by inserting a thread into left side extemal-internal carotid artery. In the sham-operatien group, inserting suture was omitted. After ischemia for 1 hour and reperfusion for 2 hours, suspension of phycocyanin was intragastdcaUy administrated into the rats of the phycocyanin-treated group at 100 mg/kg , and the same volume of normal saline was isochrenously administrated into the rats of control group as the same. ② Six rats were chosen respectively from the control group and phycocyanin-treated group, then neurologic impairment degrees of rats were evaluated according to Bederson's grading. ③ Six rats were chosen respectively from the control and phycocyanin-treated groups. The isolated brain tissue was stained with tdphenyltetrazolium chloride, and then the size of cerebral infarction was calculated with HPIAS-1000 image analytical system by calculating the ratio of cerebral infarction size at each layer and contralateral hemisphere size of the same layer. ④ Twenty--eight rats were chosen respectively from the control and phycocyanin-treated groups, Brain tissue was harvested at reperfusion for 6,12,24 hours and for 2,3,7 and 14 days after ischemia for 1 hour, respectively, 4 rats at each time point. Brain tissue of 4 rats of sham-opera- tion group was harvested at the 24^th hour after operation. Brain tissue sections were performed in situ hybridization detection of Cespase-3 mRNA. MAIN OUTCOME MEASURES: Comparison of neurologic impairment degree, cerebral infarction size and the expression of brain tissue Caspase-3 mRNA of rats between two groups RESULTS: Totally 84 rats entered the stage of result analysis. ① Bederson's scores at ischemia and reperfusion for 24 and 48 hours were significantly lower in the phycocyanin-treated group than in the control group(P 〈 0.05). ② After brain ischemia and reperfusion, the infarction area was the largest in the 3^rc layer in both control and phycocyanin-treated group, which was(25.23±0,47)% and(23.09±120) %, respectively, and the size of infarction area in the 2^nd layer to the 5^th layer was significantly smaller in the phycocyanin-treated group than in the control group (P 〈 0.05). ③Positive cell counts of brain tissue Caspase-3 mRNA: The number of positive cells of Caspase-3 mRNA of control group was increased from cerebral ischemia and reperfusion 6 hours, reached the peak at ischemia and reperfusion 24 hours, began to decrease 2 days later and positive cells of Caspese-3 mRNA were still expressed on the 14^th day after reperfusion. At ischemia and reperfusion 6,12 and 24 hours as well as 2,3,7 and 14 days, positive cell counts of Caspase-3 at peripheral ischemic area were significantly lower in the phycocyanin-treated greup[(70.67 ±3.65), (85.06±4.79), (119.54±5.37),(74.26±2.19), (62.06±3.34), (23.11±1.89), (10.75±2.63)/visual field] than in the control group [(94.38±8 28), (108.81 ±16.11), (140.88±14.47), (98.13±11.31), (81.03±9.31), (31.22±8.86), (16.06±5.96)Nisual field] ( P 〈 0.05); and those at central ischemic area were also significantly lower in the phycocyanin-treated group [(33.86±4.01), (39.51±3.46), (50.96 ±2.53), (43.07±4.09), (36.25 ±3.72), (9.03±3.87), (4.91±5.59)/visual field ]than in the control group [(51.35±2.13), (54.87±3.42), (61.77±4.94), (55.69±6.06), (49.01 ±5.73) ,(12.84±3.37), (7.32±2.39)/visual field](P 〈 0.05). CONCLUSION : Phycocyanin can obviously improve the neurologic function, reduce the size of brain infarction and down-regulate the expression of Caspase-3 mRNA of rats with ischemia and reperfusion injury, thus protect brain.展开更多
Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP great...Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP greatly enhanced the aqueous solubility of HK(127.54±15.53 mg/ml)and the stability in buffer solution was sufficient for intravenous administration.The enzymatic hydrolysis of HKP to HK was extremely rapid in vitro(T 1/2=8.9±2.11 s).Pharmacokinetics studies demonstrated that after intravenous administration of HKP(32 mg/kg),HKP was converted rapidly to HK with a time to reach the maximum plasma concentration of^5 min.The prodrug HKP achieved an improved T 1/2(7.97±1.30 h)and terminal volume of distribution(26.02±6.04 ml/kg)compared with direct injection of the equimolar parent drug(0.66±0.01 h)and(2.90±0.342 ml/kg),respectively.Furthermore,oral administration of HKP showed rapid and improved absorption compared with the parent drug.HKP was confirmed to maintain the bioactivity of the parent drug for ameliorating ischemia-reperfusion injury by decreasing brain infarction and improving neurologic function.Taken together,HKP is a potentially useful aqueous-soluble prodrug with improved pharmacokinetic properties which may merit further development as a potential drug candidate.展开更多
Objective: To observe effects of Panax Notoginseng Saponin (PSN) on the expression of Vascular Endothelial Growth Factor (VEGF) after the brain ischemia-reperfusion injury in rats. Methods: 48 SD rats had been r...Objective: To observe effects of Panax Notoginseng Saponin (PSN) on the expression of Vascular Endothelial Growth Factor (VEGF) after the brain ischemia-reperfusion injury in rats. Methods: 48 SD rats had been randomly divided into 4 groups: the sham operation group, the model group, Panax Notoginseng Saponin (PNS) group and Nimodipine group (n=12) . The rats had been treated with PNS, and 7 days later the rat focal cerebral ischemia-reperfusion models had been pre- pared. Neurobehavioral scores (NBS) had been evaluated in each group, TTC staining observed; the immunohistochemistry was used to observe VEGF and mRNA expressions. Results: PNS could not only improve significantly neurobehavioral scores and decrease dramatically cerebral infarct volume, but also increase remarkably VEGF and mRNA expression levels. Conclusion: The PNS is beneficial for rehabilitation after cerebral ischemia reperfusion injury via effectively up-regulating the injured cor- tical VEGF mRNA expression concentrations, which promotes vascular reborn in the ischemic region.展开更多
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Ischemia-reperfusion injury(IRI)remains an unavoidable challenge in liver surgery,with macrophages playing a critical role in its pathogenesis.However,the mechanisms by which macrophages regulate the pathogenesis of I...Ischemia-reperfusion injury(IRI)remains an unavoidable challenge in liver surgery,with macrophages playing a critical role in its pathogenesis.However,the mechanisms by which macrophages regulate the pathogenesis of IRI are not well understood.Through a target-guided screening approach,we identified a small 3 k Da peptide(Sj DX5-271)from various schistosome egg-derived peptides that induced M2 macrophage polarization.SjDX5-271 treatment protected mice against liver IRI by promoting M2 macrophage polarization,and this protective effect was abrogated when the macrophages were depleted.Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages from the SjDX5-271 treatment group.We further identified that SjDX5-271 promoted M2 macrophage polarization by inhibiting the TLR4/My D88/NF-κB signaling pathway and alleviated hepatic inflammation in liver IRI.Collectively,SjDX5-271 exhibited some promising therapeutic effects in IRI and represented a novel therapeutic approach,potentially applicable to other immune-related diseases.The current study demonstrates the potential of new biologics from the parasite,enhances our understanding of host-parasite interplay,and provides a blueprint for future therapies for immunerelated diseases.展开更多
With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but i...With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.展开更多
Background:The aim of the study was to explore a feasible method for alleviating limb ischemia-reperfusion injury(LI/RI)through the use of a high-concentration citrate solution(HC-A solution)for limb perfusion(LP).Met...Background:The aim of the study was to explore a feasible method for alleviating limb ischemia-reperfusion injury(LI/RI)through the use of a high-concentration citrate solution(HC-A solution)for limb perfusion(LP).Methods:Eighteen pigs were divided into three groups:the Sham group,LI/RI group,and HCA group.The Sham group underwent exposure of the iliac artery and vein.The LI/RI group underwent tourniquet placement and clamping of the iliac artery and vein to simulate LI/RI.The HCA group received HC-A solution LP for 30 min through the left iliac artery below the level of blood flow occlusion based on the LI/RI group.Oxidative stress markers and inflammatory response markers were compared among the three groups.Results:Compared to the LI/RI group,the HCA group showed significantly lower levels of serum creatine kinase(CK),lactate dehydrogenase(LDH),malondialdehyde(MDA),tumor necrosis factor-α(TNF-α),aspartate aminotransferase(AST),and ala-nine aminotransferase(ALT),and significantly greater activities of serum superoxide dismutase(SOD)(p<0.05).There were no significant differences in serum interleukin-6(IL-6)or in muscle MDA,SOD,TNF-α,and IL-6 between the HCA group and the LI/RI group(p>0.05).Compared to the LI/RI group,MDA,TNF-α,and IL-6 levels in the liver were significantly lower in the HCA group(p<0.05),while SOD activities were not significantly different(p>0.05).Histopathological examination revealed reduced skeletal muscle and liver damage in the HCA group compared to the LI/RI group.Conclusions:HC-A solution LP can alleviate liver damage caused by LI/RI in pigs.展开更多
Neuroserpin, a secreted protein that belongs to the serpin superfamily of serine protease inhibitors, is highly expressed in the central nervous system and plays multiple roles in brain development and pathology. As a...Neuroserpin, a secreted protein that belongs to the serpin superfamily of serine protease inhibitors, is highly expressed in the central nervous system and plays multiple roles in brain development and pathology. As a natural inhibitor of recombinant tissue plasminogen activator, neuroserpin inhibits the increased activity of tissue plasminogen activator in ischemic conditions and extends the therapeutic windows of tissue plasminogen activator for brain ischemia. However, the neuroprotective mechanism of neuroserpin against ischemic stroke remains unclear. In this study, we used a mouse model of middle cerebral artery occlusion and oxygen-glucose deprivation/reperfusion-injured cortical neurons as in vivo and in vitro ischemia-reperfusion models, respectively. The models were used to investigate the neuroprotective effects of neuroserpin. Our findings revealed that endoplasmic reticulum stress was promptly triggered following ischemia, initially manifesting as the acute activation of endoplasmic reticulum stress transmembrane sensors and the suppression of protein synthesis, which was followed by a later apoptotic response. Notably, ischemic stroke markedly downregulated the expression of neuroserpin in cortical neurons. Exogenous neuroserpin reversed the activation of multiple endoplasmic reticulum stress signaling molecules, the reduction in protein synthesis, and the upregulation of apoptotic transcription factors. This led to a reduction in neuronal death induced by oxygen/glucose deprivation and reperfusion, as well as decreased cerebral infarction and neurological dysfunction in mice with middle cerebral artery occlusion. However, the neuroprotective effects of neuroserpin were markedly inhibited by endoplasmic reticulum stress activators thapsigargin and tunicamycin. Our findings demonstrate that neuroserpin exerts neuroprotective effects on ischemic stroke by suppressing endoplasmic reticulum stress.展开更多
Objective:To investigate the potential protective effect of Shexiang Tongxin dropping pills(STDP)on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvas...Objective:To investigate the potential protective effect of Shexiang Tongxin dropping pills(STDP)on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvascular disease(CMVD).Methods:A rat model of myocardial ischemia-reperfusion injury with CMVD was established using ligation and reperfusion of the left anterior descending artery.The effect of STDP(21.6 mg/kg)on cardiac function was evaluated using echocardiography,hematoxylin-eosin staining,and Evans blue staining.The effects of STDP on the microvascular endothelial barrier were assessed based on nitric oxide production,endothelial nitric oxide synthase expression,structural variety of tight junctions(TJs),and the expression of zonula occludens-1(ZO-1),claudin-5,occludin,and vascular endothelial(VE)-cadherin proteins.The mechanisms of STDP(50 and 100 ng/mL)were evaluated by examining the expression of sphingosine 1-phosphate receptor 2(S1PR2),Ras Homolog family member A(RhoA),and Rho-associated coiled-coil-containing protein kinase(ROCK)proteins and the distribution of ZO-1,VE-cadherin,and Factin proteins in an oxygen and glucose deprivation/reoxygenation model.Results:The administration of STDP on CMVD rat model significantly improved cardiac and microvascular endothelial cell barrier functions(all P<.05).STDP enhanced the structural integrity of coronary microvascular positioning and distribution by clarifying and completing TJs and increasing the expression of ZO-1,occludin,claudin-5,and VE-cadherin in vivo(all P<.05).The S1PR2/RhoA/ROCK pathway was inhibited by STDP in vitro,leading to the regulation of endothelial cell TJs,adhesion junctions,and cytoskeletal morphology.Conclusion:STDP showed protective effects on cardiac impairment and microvascular endothelial barrier injury in CMVD model rats induced by myocardial ischemia-reperfusion injury through the modulation of the S1PR2/RhoA/ROCK pathway.展开更多
Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)funct...Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.展开更多
Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue.Methods:Fourty eight rats were randomly divided into four groups(n=12):sham operation group,30 min ischemia 60 min reperfusion gr...Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue.Methods:Fourty eight rats were randomly divided into four groups(n=12):sham operation group,30 min ischemia 60 min reperfusion group,60 min ischemia 60 min reperfusion group,and120 min ischemia 60 min reperfusion group.The brain tissues were taken after the experiment.TUNEL assay was used to detect the brain cell apoptosis,and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemiareperiusion induced apoptosis of brain tissues,and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreased Bcl-2 expression,increased Bax expression,upreguiated expression of NF- κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage,manifested as induced brain tissues apoptosis and inflammation activation.展开更多
Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is widely used in China for treating acute isch-emic stroke. In the pres...Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is widely used in China for treating acute isch-emic stroke. In the present study, we explored the neuroprotective efficacy of DHI in a rat model of temporary middle cerebral artery ocdusion, and evaluated the potential mechanisms under-lying its effects. Pretreatment with DHI (0.9 and 1.8 mL/kg) resulted in a significantly smaller infarct volume and better neurological scores than pretreatment with saline. Furthermore, DHI significantly reduced the permeability of the blood-brain barrier, increased occludin protein expression and decreased neutrophil infiltration, as well as profoundly suppressing the upreg-ulation of matrix metallopeptidase-9 expression seen in rats that had received vehicle. Matrix metallopeptidase-2 expression was not affected by ischemia or DHI. Moreover, DHI (1.8 mL/kg) administered 3 hours after the onset of ischemia also improved neurological scores and reduced infarct size. Our results indicate that the neuroprotective efficacy of DHI in a rat model of cerebral ischemia-reperfusion injury is mediated by a protective effect on the blood-brain barrier and the reversal of neutrophil infiltration.展开更多
Objective Oxidative stress (OS) plays a crucial role in ischemic stroke. Grape seed procyanidin extract (GSPE) was reported to be a critical regulator of OS. We hypothesized that GSPE might also be protective in...Objective Oxidative stress (OS) plays a crucial role in ischemic stroke. Grape seed procyanidin extract (GSPE) was reported to be a critical regulator of OS. We hypothesized that GSPE might also be protective in ischemia-reperfusion brain injury. This study aimed to explore whether GSPE administration can protect mice from ischemia-reperfusion brain injury. Methods Transient middle cerebral artery occlusion (MCAO) was conducted followed by reperfusion for 24 hours to make ischemia-reperfusion brain injury in mice that received GSPE (MCAOG, n=60) or normal saline (MCAONS, n=60). Sham-operated mice (GSPE group and normal saline group) were set as controls. The neurological severity score (NSS) was used to evaluate neural function impairment 1 hour, 24 hour, 3 days and 7 days after MCAO. Mice underwent brain T2WI imaging with a 3T animal MRI scanner 24 hours after reperfusion, and the stroke volume of brains were calculated according to abnormal signal intensity. Immunohistopathological analysis of brain tissues at 24 h after reperfusion was performed for neuronal nuclear antigen (NeuN), CD34, Bcl-2, and Bax. Glutathione peroxidation (GSH-Px) activity and the level of malonaldehyde (MDA) of brain tissue were also examined. The above indexes were compared among the groups statistically.Results Significant functional improvement was observed 24 hours after MCAO in MCAOG group compared to MCAONS group (P〈0.05). MCAOG group had smaller cerebral stroke volume (22.46 ± 11.45 mm3 vs. 47.84±9.06 mm3, P〈0.05) than MCAONS group 24 hours after MCAO. More mature NeuN-immunoreactive neurons and more CD34-positive cells in peri-infarct zones were observed in brain tissue of MCAOG mice 24 h after MCAO than that of MCAONS mice (both P〈0.05). MCAONS mice had significantly higher number of Bax-positive cells in brain tissue than MCAOG (P〈0.05). The mean MDA level was significantly lower (P〈0.05) and the GSH-Px activity was significantly higher (P〈0.05) in brains of MCAOG mice compared to those of MCAONS mice. Conclusion GSPE administration protects mice from ischemia-reperfusion brain injury through attenuating oxidative stress and apoptosis, promoting angiogenesis, and activating antioxidant enzyme GSH-Px. GSPE may represent a new therapeutical direction for the treatment of ischemia-reperfusion brain injury.展开更多
Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate w...Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.展开更多
AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through an...AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.展开更多
The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting...The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.展开更多
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage ...Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.展开更多
BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat b...BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat brain following transient global cerebral ischemia-reperfusion (IR), as well as the effects of hyperbaric oxygen (HBO) treatment. DESIGN, TIME AND SETTING: A randomized and controlled animal study was performed in the Department of Biochemistry and Molecular Biology, Capital Medical University between February and December 2006. MATERIALS: Clean-grade, female, Sprague Dawley rats were provided by the Animal Research Department of Capital Medical University (License number: SYXK11-00-0047). Na^+-K^+-ATPase and Ca^2+-ATPase kits were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A hyperbaric oxygen chamber (DWC150-300) was supplied by Shanghai 701 Medical Oxygen Chamber Factory (Shanghai, China). METHODS: Sixty-three rats were randomly divided into nine groups: sham operated group (sham-O) as control, groups of IR, and groups treated with hyperbaric oxygen (HBO) after IR. Animal from the IR and HBO groups were sacrificed after four different survival intervals of 6, 24, 48 and 96 hours, respectively. Each group consisted of seven rats. The rats of HBO groups were placed into the hyperbaric chamber. The HBO chamber was flushed with pure oxygen for 5 minutes, followed by a gradual rise in pressure over 5 minutes and stabilization at 0.2 MPa. Then, pure oxygen was supplied for 45 minutes in stabilized pressure, followed by gradually reduced pressure over 15 minutes. The rats of the 6-h HBO group were placed into the HBO chamber following reperfusion for 3 hours on the first day, which was repeated on three consecutive days, always at the same time. Rats in the sham-O group and IR group remained under normal atmospheric pressure. MAIN OUTCOME MEASURES: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in rat brain homogenate was detected by the ammonium molybdate assay method. RESULTS: All 63 rats were included in the final analysis. Alter 6 hours, Na^+-K^+-ATPase activity was significantly greater in HBO animals, compared with IR animals (P 〈 0.05) and sham-O controls (P〈 0.01). In both, the HBO group and IR group, Na^+-K^+-ATPase activity returned to normal levels after 24 hours (P 〉 0.05). At 48 and 96 hours, Na^+-K^+-ATPase activity was significantly greater in HBO and IR animals, compared with sham-O animals (P 〈 0.05). Ca^2+-ATPase activity was significantly greater in the HBO group after 6 hours, compared with the sham-O group (P 〈 0.01 ), and returned to normal levels at 24 and 96 hours (P 〉 0.05). In the IR group, Ca^2+-ATPase activity was significantly higher after 6 hours than in the sharn-O group (P〈 0.01), and returned to normal levels after 24 hours (P 〉 0.05). CONCLUSION: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in IR groups increased during the acute and the delayed phase following transient global cerebral IR. HBO treatment not only increased Na^+-K^+-ATPase activity at the acute stage, but also induced a faster recovery of Ca^2+-ATPase activity.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whet...BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.展开更多
文摘BACKGROUND ; Phycecyanin can anti-oxidize and clear free radial. Whether its protective effect on brain is related to Caspase-3, the promoter and operator of apoptosis, is highly concerned. OBJECTIVE: To observe phycocyanin for protecting nerve function and reducing the size of cerebral infarction of rats with brain ischemia-reperfusion and its effect on the expression of Cespese-3 mRNA. DESIGN : A randomized controlled experiment. SETTING : Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University MATERIALS: Totally 84 adult healthy female Wistar rats, weighing 210 to 250 g, of clean grade, were provided by the Animal Experimental Center of Shandong University. Phycocyanin (Institute of Oceanography of Chinese Academy of Sciences) was used. METHODS: This experiment was carried out in the Key Laboratory for Prevention and Treatment of Brain Diseases during May to December 2005. ① The rats were randomized into sham-operation group (n=4), control group (n=-40) and phycocyanin-treated group (n=-40). Middle cerebral artery occlusion/reperfusion (MACO/R) models were created on the rats of control and phycocyanin-treated groups with suture-occluded method by inserting a thread into left side extemal-internal carotid artery. In the sham-operatien group, inserting suture was omitted. After ischemia for 1 hour and reperfusion for 2 hours, suspension of phycocyanin was intragastdcaUy administrated into the rats of the phycocyanin-treated group at 100 mg/kg , and the same volume of normal saline was isochrenously administrated into the rats of control group as the same. ② Six rats were chosen respectively from the control group and phycocyanin-treated group, then neurologic impairment degrees of rats were evaluated according to Bederson's grading. ③ Six rats were chosen respectively from the control and phycocyanin-treated groups. The isolated brain tissue was stained with tdphenyltetrazolium chloride, and then the size of cerebral infarction was calculated with HPIAS-1000 image analytical system by calculating the ratio of cerebral infarction size at each layer and contralateral hemisphere size of the same layer. ④ Twenty--eight rats were chosen respectively from the control and phycocyanin-treated groups, Brain tissue was harvested at reperfusion for 6,12,24 hours and for 2,3,7 and 14 days after ischemia for 1 hour, respectively, 4 rats at each time point. Brain tissue of 4 rats of sham-opera- tion group was harvested at the 24^th hour after operation. Brain tissue sections were performed in situ hybridization detection of Cespase-3 mRNA. MAIN OUTCOME MEASURES: Comparison of neurologic impairment degree, cerebral infarction size and the expression of brain tissue Caspase-3 mRNA of rats between two groups RESULTS: Totally 84 rats entered the stage of result analysis. ① Bederson's scores at ischemia and reperfusion for 24 and 48 hours were significantly lower in the phycocyanin-treated group than in the control group(P 〈 0.05). ② After brain ischemia and reperfusion, the infarction area was the largest in the 3^rc layer in both control and phycocyanin-treated group, which was(25.23±0,47)% and(23.09±120) %, respectively, and the size of infarction area in the 2^nd layer to the 5^th layer was significantly smaller in the phycocyanin-treated group than in the control group (P 〈 0.05). ③Positive cell counts of brain tissue Caspase-3 mRNA: The number of positive cells of Caspase-3 mRNA of control group was increased from cerebral ischemia and reperfusion 6 hours, reached the peak at ischemia and reperfusion 24 hours, began to decrease 2 days later and positive cells of Caspese-3 mRNA were still expressed on the 14^th day after reperfusion. At ischemia and reperfusion 6,12 and 24 hours as well as 2,3,7 and 14 days, positive cell counts of Caspase-3 at peripheral ischemic area were significantly lower in the phycocyanin-treated greup[(70.67 ±3.65), (85.06±4.79), (119.54±5.37),(74.26±2.19), (62.06±3.34), (23.11±1.89), (10.75±2.63)/visual field] than in the control group [(94.38±8 28), (108.81 ±16.11), (140.88±14.47), (98.13±11.31), (81.03±9.31), (31.22±8.86), (16.06±5.96)Nisual field] ( P 〈 0.05); and those at central ischemic area were also significantly lower in the phycocyanin-treated group [(33.86±4.01), (39.51±3.46), (50.96 ±2.53), (43.07±4.09), (36.25 ±3.72), (9.03±3.87), (4.91±5.59)/visual field ]than in the control group [(51.35±2.13), (54.87±3.42), (61.77±4.94), (55.69±6.06), (49.01 ±5.73) ,(12.84±3.37), (7.32±2.39)/visual field](P 〈 0.05). CONCLUSION : Phycocyanin can obviously improve the neurologic function, reduce the size of brain infarction and down-regulate the expression of Caspase-3 mRNA of rats with ischemia and reperfusion injury, thus protect brain.
基金supported by the Scientific Research Fund of the National Natural Science Foundation of China ( 81201668 )Chengdu Science and Technology Bureau ( 2015HM01-00506-SF , 2018-YF05-00454-SN )+1 种基金Scientific Research Fund of the Sichuan Provincial Education Department (17CZ0011, 17ZA0109)the Scientific Research Fund of Chengdu Medical College (CYCG15-01)
文摘Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP greatly enhanced the aqueous solubility of HK(127.54±15.53 mg/ml)and the stability in buffer solution was sufficient for intravenous administration.The enzymatic hydrolysis of HKP to HK was extremely rapid in vitro(T 1/2=8.9±2.11 s).Pharmacokinetics studies demonstrated that after intravenous administration of HKP(32 mg/kg),HKP was converted rapidly to HK with a time to reach the maximum plasma concentration of^5 min.The prodrug HKP achieved an improved T 1/2(7.97±1.30 h)and terminal volume of distribution(26.02±6.04 ml/kg)compared with direct injection of the equimolar parent drug(0.66±0.01 h)and(2.90±0.342 ml/kg),respectively.Furthermore,oral administration of HKP showed rapid and improved absorption compared with the parent drug.HKP was confirmed to maintain the bioactivity of the parent drug for ameliorating ischemia-reperfusion injury by decreasing brain infarction and improving neurologic function.Taken together,HKP is a potentially useful aqueous-soluble prodrug with improved pharmacokinetic properties which may merit further development as a potential drug candidate.
文摘Objective: To observe effects of Panax Notoginseng Saponin (PSN) on the expression of Vascular Endothelial Growth Factor (VEGF) after the brain ischemia-reperfusion injury in rats. Methods: 48 SD rats had been randomly divided into 4 groups: the sham operation group, the model group, Panax Notoginseng Saponin (PNS) group and Nimodipine group (n=12) . The rats had been treated with PNS, and 7 days later the rat focal cerebral ischemia-reperfusion models had been pre- pared. Neurobehavioral scores (NBS) had been evaluated in each group, TTC staining observed; the immunohistochemistry was used to observe VEGF and mRNA expressions. Results: PNS could not only improve significantly neurobehavioral scores and decrease dramatically cerebral infarct volume, but also increase remarkably VEGF and mRNA expression levels. Conclusion: The PNS is beneficial for rehabilitation after cerebral ischemia reperfusion injury via effectively up-regulating the injured cor- tical VEGF mRNA expression concentrations, which promotes vascular reborn in the ischemic region.
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
基金supported by the National Natural Science Foundation of China(Grant No.81971965)。
文摘Ischemia-reperfusion injury(IRI)remains an unavoidable challenge in liver surgery,with macrophages playing a critical role in its pathogenesis.However,the mechanisms by which macrophages regulate the pathogenesis of IRI are not well understood.Through a target-guided screening approach,we identified a small 3 k Da peptide(Sj DX5-271)from various schistosome egg-derived peptides that induced M2 macrophage polarization.SjDX5-271 treatment protected mice against liver IRI by promoting M2 macrophage polarization,and this protective effect was abrogated when the macrophages were depleted.Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages from the SjDX5-271 treatment group.We further identified that SjDX5-271 promoted M2 macrophage polarization by inhibiting the TLR4/My D88/NF-κB signaling pathway and alleviated hepatic inflammation in liver IRI.Collectively,SjDX5-271 exhibited some promising therapeutic effects in IRI and represented a novel therapeutic approach,potentially applicable to other immune-related diseases.The current study demonstrates the potential of new biologics from the parasite,enhances our understanding of host-parasite interplay,and provides a blueprint for future therapies for immunerelated diseases.
文摘With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.
基金Natural Science Foundation of Fujian Province,Grant/Award Number:2021J011262 and 2022J011095Youth Independent Innovation and Incubation Special Project,Grant/Award Number:2022QC07The project of 900th Hospital,Grant/Award Number:2021MS02 and 2023GK01。
文摘Background:The aim of the study was to explore a feasible method for alleviating limb ischemia-reperfusion injury(LI/RI)through the use of a high-concentration citrate solution(HC-A solution)for limb perfusion(LP).Methods:Eighteen pigs were divided into three groups:the Sham group,LI/RI group,and HCA group.The Sham group underwent exposure of the iliac artery and vein.The LI/RI group underwent tourniquet placement and clamping of the iliac artery and vein to simulate LI/RI.The HCA group received HC-A solution LP for 30 min through the left iliac artery below the level of blood flow occlusion based on the LI/RI group.Oxidative stress markers and inflammatory response markers were compared among the three groups.Results:Compared to the LI/RI group,the HCA group showed significantly lower levels of serum creatine kinase(CK),lactate dehydrogenase(LDH),malondialdehyde(MDA),tumor necrosis factor-α(TNF-α),aspartate aminotransferase(AST),and ala-nine aminotransferase(ALT),and significantly greater activities of serum superoxide dismutase(SOD)(p<0.05).There were no significant differences in serum interleukin-6(IL-6)or in muscle MDA,SOD,TNF-α,and IL-6 between the HCA group and the LI/RI group(p>0.05).Compared to the LI/RI group,MDA,TNF-α,and IL-6 levels in the liver were significantly lower in the HCA group(p<0.05),while SOD activities were not significantly different(p>0.05).Histopathological examination revealed reduced skeletal muscle and liver damage in the HCA group compared to the LI/RI group.Conclusions:HC-A solution LP can alleviate liver damage caused by LI/RI in pigs.
基金supported in part by the National Key Research&Development Program of China,No. 2022YFA1104900 (to LS)the National Natural Science Foundation of China,Nos. 82371175, 82071535 (both to LS), 82101614 (to YP)+5 种基金the International Science and Technology Cooperation Projects of Guangdong Province,No. 2023A0505050121 (to LS)Guangdong Basic and Applied Basic Research Foundation,Nos. 2022B1515130007 (to LS), 2023A1515030012 (to SZ), 2022A1515010666 (to WL)the Science and Technology Program of Guangzhou,Nos. 202102070001 (to LS), 202201010041 (to YP)Shenzhen Basic Research Grant,Nos. JCYJ20200109140414636, JCYJ20230807145103007 (both to WL)awarded a Royal Society Newton Advanced Fellowship,No. AOMS-NAF0051003in collaboration with Zoltán Molnár,Department of Physiology,Anatomy and Genetics,University of Oxford (2017–2021)。
文摘Neuroserpin, a secreted protein that belongs to the serpin superfamily of serine protease inhibitors, is highly expressed in the central nervous system and plays multiple roles in brain development and pathology. As a natural inhibitor of recombinant tissue plasminogen activator, neuroserpin inhibits the increased activity of tissue plasminogen activator in ischemic conditions and extends the therapeutic windows of tissue plasminogen activator for brain ischemia. However, the neuroprotective mechanism of neuroserpin against ischemic stroke remains unclear. In this study, we used a mouse model of middle cerebral artery occlusion and oxygen-glucose deprivation/reperfusion-injured cortical neurons as in vivo and in vitro ischemia-reperfusion models, respectively. The models were used to investigate the neuroprotective effects of neuroserpin. Our findings revealed that endoplasmic reticulum stress was promptly triggered following ischemia, initially manifesting as the acute activation of endoplasmic reticulum stress transmembrane sensors and the suppression of protein synthesis, which was followed by a later apoptotic response. Notably, ischemic stroke markedly downregulated the expression of neuroserpin in cortical neurons. Exogenous neuroserpin reversed the activation of multiple endoplasmic reticulum stress signaling molecules, the reduction in protein synthesis, and the upregulation of apoptotic transcription factors. This led to a reduction in neuronal death induced by oxygen/glucose deprivation and reperfusion, as well as decreased cerebral infarction and neurological dysfunction in mice with middle cerebral artery occlusion. However, the neuroprotective effects of neuroserpin were markedly inhibited by endoplasmic reticulum stress activators thapsigargin and tunicamycin. Our findings demonstrate that neuroserpin exerts neuroprotective effects on ischemic stroke by suppressing endoplasmic reticulum stress.
基金supported the National Natural Science Foundation of China(81930113).
文摘Objective:To investigate the potential protective effect of Shexiang Tongxin dropping pills(STDP)on ischemia-reperfusion injury and its underlying mechanisms in improving endothelial cell function in coronary microvascular disease(CMVD).Methods:A rat model of myocardial ischemia-reperfusion injury with CMVD was established using ligation and reperfusion of the left anterior descending artery.The effect of STDP(21.6 mg/kg)on cardiac function was evaluated using echocardiography,hematoxylin-eosin staining,and Evans blue staining.The effects of STDP on the microvascular endothelial barrier were assessed based on nitric oxide production,endothelial nitric oxide synthase expression,structural variety of tight junctions(TJs),and the expression of zonula occludens-1(ZO-1),claudin-5,occludin,and vascular endothelial(VE)-cadherin proteins.The mechanisms of STDP(50 and 100 ng/mL)were evaluated by examining the expression of sphingosine 1-phosphate receptor 2(S1PR2),Ras Homolog family member A(RhoA),and Rho-associated coiled-coil-containing protein kinase(ROCK)proteins and the distribution of ZO-1,VE-cadherin,and Factin proteins in an oxygen and glucose deprivation/reoxygenation model.Results:The administration of STDP on CMVD rat model significantly improved cardiac and microvascular endothelial cell barrier functions(all P<.05).STDP enhanced the structural integrity of coronary microvascular positioning and distribution by clarifying and completing TJs and increasing the expression of ZO-1,occludin,claudin-5,and VE-cadherin in vivo(all P<.05).The S1PR2/RhoA/ROCK pathway was inhibited by STDP in vitro,leading to the regulation of endothelial cell TJs,adhesion junctions,and cytoskeletal morphology.Conclusion:STDP showed protective effects on cardiac impairment and microvascular endothelial barrier injury in CMVD model rats induced by myocardial ischemia-reperfusion injury through the modulation of the S1PR2/RhoA/ROCK pathway.
基金supported by grants from the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0148)the National Natural Science Foundation of China (82170666 and 81873592)Chongqing Research Program of Technological Innovation and Application Demonstration (cstc2021jscx-gksbX0060)
文摘Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.
基金funded by the Henan Province Education Departent Natural Science Research Item(2010A320020)
文摘Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue.Methods:Fourty eight rats were randomly divided into four groups(n=12):sham operation group,30 min ischemia 60 min reperfusion group,60 min ischemia 60 min reperfusion group,and120 min ischemia 60 min reperfusion group.The brain tissues were taken after the experiment.TUNEL assay was used to detect the brain cell apoptosis,and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemiareperiusion induced apoptosis of brain tissues,and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreased Bcl-2 expression,increased Bax expression,upreguiated expression of NF- κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage,manifested as induced brain tissues apoptosis and inflammation activation.
基金supported by the National Natural Science Foundation of China,No.81173592National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2011ZX09201-201,2012ZX09101201-004,2012ZX09101202,NCET-130935,2013ZX09201020+1 种基金Tianjin Municipal Applied Basic Research and Cutting-Edge Technology Research Scheme of China,No.14JCYBJC28900Program for Innovation Team Training in Universities in Tianjin,No.TD12-5035
文摘Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is widely used in China for treating acute isch-emic stroke. In the present study, we explored the neuroprotective efficacy of DHI in a rat model of temporary middle cerebral artery ocdusion, and evaluated the potential mechanisms under-lying its effects. Pretreatment with DHI (0.9 and 1.8 mL/kg) resulted in a significantly smaller infarct volume and better neurological scores than pretreatment with saline. Furthermore, DHI significantly reduced the permeability of the blood-brain barrier, increased occludin protein expression and decreased neutrophil infiltration, as well as profoundly suppressing the upreg-ulation of matrix metallopeptidase-9 expression seen in rats that had received vehicle. Matrix metallopeptidase-2 expression was not affected by ischemia or DHI. Moreover, DHI (1.8 mL/kg) administered 3 hours after the onset of ischemia also improved neurological scores and reduced infarct size. Our results indicate that the neuroprotective efficacy of DHI in a rat model of cerebral ischemia-reperfusion injury is mediated by a protective effect on the blood-brain barrier and the reversal of neutrophil infiltration.
基金Supported by Peking Union Medical College Youth Research Funds(3332016010)Peking Union Medical College Graduate Studen Innovation Fund(2015-1002-02-09)
文摘Objective Oxidative stress (OS) plays a crucial role in ischemic stroke. Grape seed procyanidin extract (GSPE) was reported to be a critical regulator of OS. We hypothesized that GSPE might also be protective in ischemia-reperfusion brain injury. This study aimed to explore whether GSPE administration can protect mice from ischemia-reperfusion brain injury. Methods Transient middle cerebral artery occlusion (MCAO) was conducted followed by reperfusion for 24 hours to make ischemia-reperfusion brain injury in mice that received GSPE (MCAOG, n=60) or normal saline (MCAONS, n=60). Sham-operated mice (GSPE group and normal saline group) were set as controls. The neurological severity score (NSS) was used to evaluate neural function impairment 1 hour, 24 hour, 3 days and 7 days after MCAO. Mice underwent brain T2WI imaging with a 3T animal MRI scanner 24 hours after reperfusion, and the stroke volume of brains were calculated according to abnormal signal intensity. Immunohistopathological analysis of brain tissues at 24 h after reperfusion was performed for neuronal nuclear antigen (NeuN), CD34, Bcl-2, and Bax. Glutathione peroxidation (GSH-Px) activity and the level of malonaldehyde (MDA) of brain tissue were also examined. The above indexes were compared among the groups statistically.Results Significant functional improvement was observed 24 hours after MCAO in MCAOG group compared to MCAONS group (P〈0.05). MCAOG group had smaller cerebral stroke volume (22.46 ± 11.45 mm3 vs. 47.84±9.06 mm3, P〈0.05) than MCAONS group 24 hours after MCAO. More mature NeuN-immunoreactive neurons and more CD34-positive cells in peri-infarct zones were observed in brain tissue of MCAOG mice 24 h after MCAO than that of MCAONS mice (both P〈0.05). MCAONS mice had significantly higher number of Bax-positive cells in brain tissue than MCAOG (P〈0.05). The mean MDA level was significantly lower (P〈0.05) and the GSH-Px activity was significantly higher (P〈0.05) in brains of MCAOG mice compared to those of MCAONS mice. Conclusion GSPE administration protects mice from ischemia-reperfusion brain injury through attenuating oxidative stress and apoptosis, promoting angiogenesis, and activating antioxidant enzyme GSH-Px. GSPE may represent a new therapeutical direction for the treatment of ischemia-reperfusion brain injury.
基金This study was supported by grants from the National Natural Science Foundation of China(No.81970563)the Medical Health Science and Technology Project of Health Commission of Zhejiang Province(2019RC055).
文摘Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.
基金Supported by the National Natural Science Foundation of China(No.82174444)the Chengdu University of Traditional Chinese Medicine Xinglin Scholar Discipline Talent Research Promotion Program Project(No.XKTD2022009)the Inheritance and Communication Department of Science and Technology Innovation Engineering Department of Chinese Academy of Chinese Medical Sciences(No.XJ2023001701).
文摘AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.
基金supported by the grants from the Spanish Ministry of Economy and Competitiveness(SAF2017-85602-R)the Spanish Ministry of Science and Innovation(PID2020-119638RB-I00 to EGR)FPU-program(FPU17/02616 to JCG)。
文摘The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
基金Supported by Key Project of Henan Provincial Administration of Traditional Chinese Medicine,No.2017ZY1020General Public Relations Project of Henan Provincial Department of Science and Technology,No.212102311123General Research Project of the National Administration of Traditional Chinese Medicine,No.GZY-KJS-2021-017.
文摘Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.
基金Science and Technology Development Program of Beijing Education Committee, No.KM200510025004
文摘BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat brain following transient global cerebral ischemia-reperfusion (IR), as well as the effects of hyperbaric oxygen (HBO) treatment. DESIGN, TIME AND SETTING: A randomized and controlled animal study was performed in the Department of Biochemistry and Molecular Biology, Capital Medical University between February and December 2006. MATERIALS: Clean-grade, female, Sprague Dawley rats were provided by the Animal Research Department of Capital Medical University (License number: SYXK11-00-0047). Na^+-K^+-ATPase and Ca^2+-ATPase kits were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A hyperbaric oxygen chamber (DWC150-300) was supplied by Shanghai 701 Medical Oxygen Chamber Factory (Shanghai, China). METHODS: Sixty-three rats were randomly divided into nine groups: sham operated group (sham-O) as control, groups of IR, and groups treated with hyperbaric oxygen (HBO) after IR. Animal from the IR and HBO groups were sacrificed after four different survival intervals of 6, 24, 48 and 96 hours, respectively. Each group consisted of seven rats. The rats of HBO groups were placed into the hyperbaric chamber. The HBO chamber was flushed with pure oxygen for 5 minutes, followed by a gradual rise in pressure over 5 minutes and stabilization at 0.2 MPa. Then, pure oxygen was supplied for 45 minutes in stabilized pressure, followed by gradually reduced pressure over 15 minutes. The rats of the 6-h HBO group were placed into the HBO chamber following reperfusion for 3 hours on the first day, which was repeated on three consecutive days, always at the same time. Rats in the sham-O group and IR group remained under normal atmospheric pressure. MAIN OUTCOME MEASURES: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in rat brain homogenate was detected by the ammonium molybdate assay method. RESULTS: All 63 rats were included in the final analysis. Alter 6 hours, Na^+-K^+-ATPase activity was significantly greater in HBO animals, compared with IR animals (P 〈 0.05) and sham-O controls (P〈 0.01). In both, the HBO group and IR group, Na^+-K^+-ATPase activity returned to normal levels after 24 hours (P 〉 0.05). At 48 and 96 hours, Na^+-K^+-ATPase activity was significantly greater in HBO and IR animals, compared with sham-O animals (P 〈 0.05). Ca^2+-ATPase activity was significantly greater in the HBO group after 6 hours, compared with the sham-O group (P 〈 0.01 ), and returned to normal levels at 24 and 96 hours (P 〉 0.05). In the IR group, Ca^2+-ATPase activity was significantly higher after 6 hours than in the sharn-O group (P〈 0.01), and returned to normal levels after 24 hours (P 〉 0.05). CONCLUSION: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in IR groups increased during the acute and the delayed phase following transient global cerebral IR. HBO treatment not only increased Na^+-K^+-ATPase activity at the acute stage, but also induced a faster recovery of Ca^2+-ATPase activity.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金Supported by the National Natural Science Foundation of China,No.82200270.
文摘BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.