This paper presented a novel bus encoding method to reduce the switching activity on address buses and hence reduce power dissipation. Dynamic-sorting encoding(DSE) method reduces the power dissipation of address bus ...This paper presented a novel bus encoding method to reduce the switching activity on address buses and hence reduce power dissipation. Dynamic-sorting encoding(DSE) method reduces the power dissipation of address bus based on the dynamic reordering of the modified offset address bus lines. This method reorders the ten least significant bits of offset address according to the range of offset address, and the optimal sorting pattern is transmitted through the high bits of address bus without the need for redundant bus lines. The experimental results by using an instruction set simulator and SPEC2000 benchmarks show that DSE method can reduce signal transitions on the address bus by 88.2%, and the actual overhead of the encoder circuit is estimated after encoder is designed and synthesized in 0.18-μm CMOS technology. The results show that DSE method outperforms the low-power encoding schemes presented in the past.展开更多
DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational powe...DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.展开更多
基金Sponsored by the National High Technology Research and Development Prgram of China(Grant No.2005AA1Z1100).
文摘This paper presented a novel bus encoding method to reduce the switching activity on address buses and hence reduce power dissipation. Dynamic-sorting encoding(DSE) method reduces the power dissipation of address bus based on the dynamic reordering of the modified offset address bus lines. This method reorders the ten least significant bits of offset address according to the range of offset address, and the optimal sorting pattern is transmitted through the high bits of address bus without the need for redundant bus lines. The experimental results by using an instruction set simulator and SPEC2000 benchmarks show that DSE method can reduce signal transitions on the address bus by 88.2%, and the actual overhead of the encoder circuit is estimated after encoder is designed and synthesized in 0.18-μm CMOS technology. The results show that DSE method outperforms the low-power encoding schemes presented in the past.
文摘DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.