It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined q...The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.展开更多
The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature t...The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.展开更多
Objective The natural gas exploration of the Sinian reservoirs in the central Sichuan Basin has made a significant breakthrough in recent years, and has thus attracted much attention among geologists. The Sichuan Bas...Objective The natural gas exploration of the Sinian reservoirs in the central Sichuan Basin has made a significant breakthrough in recent years, and has thus attracted much attention among geologists. The Sichuan Basin is known to have complicated geological settings, which has experienced multiple stages of tectonic evolution, fluid charging and hydrocarbon accumulation. This research aims to determine the geochemical characteristics of each stage of fluids, the features and time interval of fluid activity in different geologic periods, and further to restore the critical period and geological age of the hydrocarbon accumulation.展开更多
The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutu...The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutual relation of the two kinds of phenomenon,were contribute to monitor the regulation of the mine rock and pre- vent the dynamic disasters of the mine.There were two charge sensors,one electromag- netic radiated sensors and one pressure sensor in the experiment to detect the EME sig- nal and the charge intensity signal during the load-bearing failure processing of the rock. The results show that the charge intensity signal is prior to the EME signal through the date processing and numerical analysis.The two signals change obviously before the rock crush.The two kinds of phenomenon are homogenous and have obvious master-slave characteristic.With the appeared of the EME signal,the charge intensity signal decreased, the power is released.展开更多
In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power system...In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power systems.In this study,Atmospheric Pressure Plasma Jet(APPJ)technology was used to deposit TiO_(2) on the surface of alumina/epoxy(Al_(2)O_(3)/EP)composites.The impact of deposition of TiO_(2) layer on the surface morphology and chemical composition of Al_(2)O_(3)/EP was studied using testing methods such as Scanning Electron Microscope,X-ray photoelectron spectroscopy,Fourier Transform Infrared Spectrometer,and Energy Dispersive Spectrometer.It was found that APPJ creates a dense,rough Ti-O layer on the Al_(2)O_(3)/EP surface,which bonds tightly with the substrate.The efficacy of APPJ was found to depend on processing time,with optimal results observed at 3 min,DC and AC flashover voltages increased by 29.6% and 15.7%,respectively.TiO_(2)layer enhances the conductivity of the resin and shallows trap levels.Through the synergistic effects of various factors,surface charges are efficiently dissipated and evenly distributed.This study not only reveals the physicochemical process of TiO_(2)deposition via APPJ but also integrates surface characteristics with electrical performance.The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.展开更多
The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydroc...The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydrocarbon charging events.The hydrocarbon migration and accumulation process of“early oil and late gas”has occurred in the current reservoirs.At the end of the sedimentation of the Guantao Formation(N_(1)g,∼12 Ma),the reservoirs began to fill with first stage low-moderate mature crude oil.At the late stage of the Lower Minghuazhen Formation(N_(1)ml)(∼6.7 Ma),the reservoirs were largely charged with second stage high mature crude oil.Since the deposition of the upper Minghuazhen Formation(N_(2)m^(u),∼5.1 Ma),the paleo-oil reservoirs were transformed into shallow Neogene reservoirs due to the reactivation of basement faults.From the late stage of the N_(2)m^(u)to the present day(∼2.8–0 Ma),the reservoirs were rapidly filled by natural gas within a short period.In addition,analysis of the formation of the reservoir bitumen and the conspicuous loss of the lower molecular weight n-alkanes in the crude oil reveal that the injection of a large amount of gas in the late stage caused gas flushing of the early charged oil.展开更多
The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion ...The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.展开更多
In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influenc...In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.展开更多
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the...The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.展开更多
A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resi...A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.展开更多
Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive ...Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive analysis of geochemical,fluid inclusion and production data.The results indicate that gas volume expansion since the Late Cretaceous was the driving force for adjustment and secondary charging of tight sandstone gas reservoirs in the Sulige gas field of the Ordos Basin.The gas retained in the source rocks expanded in volume,resulting in gas re-expulsion,migration and secondary charging into reservoirs,while the gas volume expansion in the tight reservoirs caused the increase of gas saturation,gas-bearing area and gas column height,which worked together to increase the gas content of the reservoir and bring about large-scale gas accumulation events.The Sulige gas field had experienced a two-stage accumulation process,burial before the end of Early Cretaceous and uplifting since the Late Cretaceous.In the burial stage,natural gas was driven by hydrocarbon generation overpressure to migrate and accumulate,while in the uplifting stage,the gas volume expansion drove internal adjustment inside gas reservoirs and secondary charging to form new reservoirs.On the whole,the gas reservoir adjustment and secondary charging during uplifting stage is more significant in the eastern gas field than that in the west,which is favorable for forming gas-rich area.展开更多
A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown character...A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown characteristics are investigated theoretically. A high concentration of charges accumulate on the interface, whose density changes with the negative drain voltage, which increase the electric field (Er) in the dielectric buried oxide layer (BOX) and modulate the electric field in drift region . This results in the enhancement of the breakdown voltage (BV). The values of E1 and BV of an HI PSOI with a 2-~m thick SOI layer over a 1-~tm thick buried layer are 580V/~m and -582 V, respectively, compared with 81.5 V/p.m and -123 V of a conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect (SHE). Moreover, in comparison with the conventional device, the proposed device exhibits low on-resistance.展开更多
Fluid inclusion analysis and testing were conducted to clarify the relationship between reservoir densification and hydrocarbon accumulation in the Paleogene Pinghu and Huagang formations in the Xihu Depression.The hy...Fluid inclusion analysis and testing were conducted to clarify the relationship between reservoir densification and hydrocarbon accumulation in the Paleogene Pinghu and Huagang formations in the Xihu Depression.The hydrocarbon accumulation stages of the reservoirs were studied in combination with the reconstruction results of burial and thermal evolution histories.Furthermore,the relationship between reservoir densification and accumulation charging was clarified in combination with the pore evolutionary history.In accordance with the time relation between reservoir densification and hydrocarbon charging,the reservoirs were classified into three types:pre-charging,syn-charging,and after-charging densification.Results indicated that large-scale hydrocarbon charging occurred in 11–0Myr.Reservoir densification was mainly caused by strong mechanical compaction and pore filling by well-developed siliceous and carbonate cements.Entering the middle diagenetic stage A1,the reservoir was under an acidic-diagenetic environment,resulting in the development of secondary dissolution pores.If large-scale hydrocarbon charging occurred during this period,then an after-charging densification reservoir,which is the most suitable type for hydrocarbon accumulation,might have developed.Entering the middle diagenetic stage A2,the reservoir was under an acidic-alkaline transitional diagenetic environment.During this stage,dissolution became weak,and compaction and cementation were enhanced,resulting in the continuous loss of pore space and reservoir densification.Entering the middle diagenetic period B,the reservoir was under an alkaline-diagenetic environment,and the reservoir had been largely densified.If large-scale hydrocarbon charging occurred during this period,a pre-charging densified reservoir,which is the worst reservoir type for hydrocarbon accumulation,might have developed.展开更多
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
基金Supported by the National Natural Science Foundation of China(42302183,42272156,41922015)Sanya City Science and Technology Innovation Project(2022KJCX51).
文摘The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.
基金Supported by the National Natural Science Foundation of China(41572133,41372141)
文摘The multi-stage minerals filled in pore space were sequenced, and the charging stages of fluid and hydrocarbon were reconstructed based on the observation of drilling cores and thin sections, homogeneous temperature testing of fluid inclusions, Laser Raman composition analysis and isotope geochemical analysis. The Cambrian Longwangmiao Formation in the study area went through 5 stages of fluid charging, in which 3 stages, mid-late Triassic, early-mid Jurassic and early-mid Cretaceous, were related to oil and gas charging. Especially the oil and gas charging event in early-mid Cretaceous was the critical period of gas accumulation in the study area, and was recorded by methane gas inclusions in the late stage quartz fillings. The ^(40) Ar-^(39) Ar dating of the 3 rd stage methane inclusions shows that the natural gas charging of this stage was from 125.8±8.2 Ma. Analysis of Si, O isotopes and ^(87) Sr/^(86) Sr of the late stage quartz indicates that the fluid source of the quartz was formation water coming from long term evolution and concentration of meteoric water, but not from deep part or other sources, this also reflects that, in the critical charging period of natural gas, the Cambrian Longwangmiao Formation in Moxi structure had favorable conservation conditions for hydrocarbon accumulation, which was favorable for the formation of the Longwangmiao large natural gas pool.
基金supported by the Natural Science Foundation of China(grant No.41372141)
文摘Objective The natural gas exploration of the Sinian reservoirs in the central Sichuan Basin has made a significant breakthrough in recent years, and has thus attracted much attention among geologists. The Sichuan Basin is known to have complicated geological settings, which has experienced multiple stages of tectonic evolution, fluid charging and hydrocarbon accumulation. This research aims to determine the geochemical characteristics of each stage of fluids, the features and time interval of fluid activity in different geologic periods, and further to restore the critical period and geological age of the hydrocarbon accumulation.
基金the National Natural Science Foundation of China(50490275)Education Office of Liaoning Province(20082123)
文摘The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock.The mechanism and signal law of the two kinds of phenomenon through the experiment,as well as the mutual relation of the two kinds of phenomenon,were contribute to monitor the regulation of the mine rock and pre- vent the dynamic disasters of the mine.There were two charge sensors,one electromag- netic radiated sensors and one pressure sensor in the experiment to detect the EME sig- nal and the charge intensity signal during the load-bearing failure processing of the rock. The results show that the charge intensity signal is prior to the EME signal through the date processing and numerical analysis.The two signals change obviously before the rock crush.The two kinds of phenomenon are homogenous and have obvious master-slave characteristic.With the appeared of the EME signal,the charge intensity signal decreased, the power is released.
基金National Natural Science Foundation of China(Nos.52007065 and 52277147)the Fundamental Research Funds for the Central Universities(No.2022MS071)。
文摘In gas-insulated lines,basin-insulators can accumulate charge under non-uniform electric fields,distorting the field distribution and potentially causing surface flashover,which threatens the stability of power systems.In this study,Atmospheric Pressure Plasma Jet(APPJ)technology was used to deposit TiO_(2) on the surface of alumina/epoxy(Al_(2)O_(3)/EP)composites.The impact of deposition of TiO_(2) layer on the surface morphology and chemical composition of Al_(2)O_(3)/EP was studied using testing methods such as Scanning Electron Microscope,X-ray photoelectron spectroscopy,Fourier Transform Infrared Spectrometer,and Energy Dispersive Spectrometer.It was found that APPJ creates a dense,rough Ti-O layer on the Al_(2)O_(3)/EP surface,which bonds tightly with the substrate.The efficacy of APPJ was found to depend on processing time,with optimal results observed at 3 min,DC and AC flashover voltages increased by 29.6% and 15.7%,respectively.TiO_(2)layer enhances the conductivity of the resin and shallows trap levels.Through the synergistic effects of various factors,surface charges are efficiently dissipated and evenly distributed.This study not only reveals the physicochemical process of TiO_(2)deposition via APPJ but also integrates surface characteristics with electrical performance.The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.
基金supported by the National Science&Technology Specific Project,China(No.2016ZX05024-003-008).
文摘The Bozhong19-6(BZ19-6)condensate gas reservoirs,located in the southwestern Bozhong sub-basin,Bohai Bay Basin,China,were paleo-oil reservoirs in the geological past and have undergone at least three successive hydrocarbon charging events.The hydrocarbon migration and accumulation process of“early oil and late gas”has occurred in the current reservoirs.At the end of the sedimentation of the Guantao Formation(N_(1)g,∼12 Ma),the reservoirs began to fill with first stage low-moderate mature crude oil.At the late stage of the Lower Minghuazhen Formation(N_(1)ml)(∼6.7 Ma),the reservoirs were largely charged with second stage high mature crude oil.Since the deposition of the upper Minghuazhen Formation(N_(2)m^(u),∼5.1 Ma),the paleo-oil reservoirs were transformed into shallow Neogene reservoirs due to the reactivation of basement faults.From the late stage of the N_(2)m^(u)to the present day(∼2.8–0 Ma),the reservoirs were rapidly filled by natural gas within a short period.In addition,analysis of the formation of the reservoir bitumen and the conspicuous loss of the lower molecular weight n-alkanes in the crude oil reveal that the injection of a large amount of gas in the late stage caused gas flushing of the early charged oil.
基金Supported by the Special Project of National Key R&D Plan(2017YFC0603106).
文摘The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.
基金the financial support from National Natural Science Foundation of China (No. 51607128)Natural Science Foundation of Hubei Province (No. 2016CFB111)China Postdoctoral Science Foundation (No. 2016M602353)
文摘In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.
基金supported by the National Key Research and Development Program(Grant No.2016YFB0900900)National Natural Science Foundation of China(Grant No.51577064)
文摘The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
基金National Hi-tech Research Development Program of China(863 Program,No.2002AA501732)National Basic Research Program of China(973 Program,No.2007CB209707)
文摘A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.
基金Supported by the National Natural Science Foundation of China(41502132)China National Demonstration Project(2016ZX05050).
文摘Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive analysis of geochemical,fluid inclusion and production data.The results indicate that gas volume expansion since the Late Cretaceous was the driving force for adjustment and secondary charging of tight sandstone gas reservoirs in the Sulige gas field of the Ordos Basin.The gas retained in the source rocks expanded in volume,resulting in gas re-expulsion,migration and secondary charging into reservoirs,while the gas volume expansion in the tight reservoirs caused the increase of gas saturation,gas-bearing area and gas column height,which worked together to increase the gas content of the reservoir and bring about large-scale gas accumulation events.The Sulige gas field had experienced a two-stage accumulation process,burial before the end of Early Cretaceous and uplifting since the Late Cretaceous.In the burial stage,natural gas was driven by hydrocarbon generation overpressure to migrate and accumulate,while in the uplifting stage,the gas volume expansion drove internal adjustment inside gas reservoirs and secondary charging to form new reservoirs.On the whole,the gas reservoir adjustment and secondary charging during uplifting stage is more significant in the eastern gas field than that in the west,which is favorable for forming gas-rich area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060)the Funds of the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904)the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721)
文摘A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown characteristics are investigated theoretically. A high concentration of charges accumulate on the interface, whose density changes with the negative drain voltage, which increase the electric field (Er) in the dielectric buried oxide layer (BOX) and modulate the electric field in drift region . This results in the enhancement of the breakdown voltage (BV). The values of E1 and BV of an HI PSOI with a 2-~m thick SOI layer over a 1-~tm thick buried layer are 580V/~m and -582 V, respectively, compared with 81.5 V/p.m and -123 V of a conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect (SHE). Moreover, in comparison with the conventional device, the proposed device exhibits low on-resistance.
基金This study was supported by the National Science and Technology Major Projects(No.2016ZX05027-002-006)the Research on the Key Technologies of Exploration and Development in the West of Xihu Depression(No.CNOOC-KJ135ZDXM39SH01).
文摘Fluid inclusion analysis and testing were conducted to clarify the relationship between reservoir densification and hydrocarbon accumulation in the Paleogene Pinghu and Huagang formations in the Xihu Depression.The hydrocarbon accumulation stages of the reservoirs were studied in combination with the reconstruction results of burial and thermal evolution histories.Furthermore,the relationship between reservoir densification and accumulation charging was clarified in combination with the pore evolutionary history.In accordance with the time relation between reservoir densification and hydrocarbon charging,the reservoirs were classified into three types:pre-charging,syn-charging,and after-charging densification.Results indicated that large-scale hydrocarbon charging occurred in 11–0Myr.Reservoir densification was mainly caused by strong mechanical compaction and pore filling by well-developed siliceous and carbonate cements.Entering the middle diagenetic stage A1,the reservoir was under an acidic-diagenetic environment,resulting in the development of secondary dissolution pores.If large-scale hydrocarbon charging occurred during this period,then an after-charging densification reservoir,which is the most suitable type for hydrocarbon accumulation,might have developed.Entering the middle diagenetic stage A2,the reservoir was under an acidic-alkaline transitional diagenetic environment.During this stage,dissolution became weak,and compaction and cementation were enhanced,resulting in the continuous loss of pore space and reservoir densification.Entering the middle diagenetic period B,the reservoir was under an alkaline-diagenetic environment,and the reservoir had been largely densified.If large-scale hydrocarbon charging occurred during this period,a pre-charging densified reservoir,which is the worst reservoir type for hydrocarbon accumulation,might have developed.