This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations ...BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.展开更多
Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of ...Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.展开更多
The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an ...The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an influx of migrants drawn by burgeoning industries, leading to unplanned urban growth and the emergence of vulnerable communities like Vila Socó. This article examines the interconnected factors—such as demographic shifts, inadequate planning, and regulatory oversight—that culminated in the devastating fire of 1984, claiming numerous lives and highlighting systemic failures. Utilizing the Haddon Matrix, this study dissects the Vila Socó incident, emphasizing the roles of human error, infrastructure integrity, and socio-economic disparities in disaster causation. By contextualizing the tragedy within Cubatão’s industrial trajectory, it underscores the urgent need for comprehensive risk assessment and proactive mitigation strategies in rapidly developing regions globally. Beyond its immediate focus, this work offers broader insights into the dynamics of industrial disasters and their socio-economic implications. As pipelines continue to play a vital role in global energy infrastructure, the lessons drawn from Vila Socó’s tragedy resonate deeply, emphasizing the imperative of robust safety protocols and accountable governance to prevent similar catastrophes in the future.展开更多
BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affectin...BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affecting work and interpersonal communication,increasing the risk of recurrence,and adding to the burden on families.Studying the influencing factors of their social function is of great significance.AIM To explore the social function score and its influencing factors in patients with residual depressive symptoms.METHODS This observational study surveyed patients with residual depressive symptoms(case group)and healthy patients undergoing physical examinations(control group).Participants were admitted between January 2022 and December 2023.Social functioning was assessed using the Sheehan Disability Scale(SDS),and scores were compared between groups.Factors influencing SDS scores in patients with residual depressive symptoms were analyzed by applying multiple linear regression while using the receiver operating characteristic curve,and these RESULTS The SDS scores of the 158 patients with depressive symptoms were 11.48±3.26.Compared with the control group,the SDS scores and all items in the case group were higher.SDS scores were higher in patients with relapse,discon-tinuous medication,drug therapy alone,severe somatic symptoms,obvious residual symptoms,and anxiety scores≥8.Disease history,medication compliance,therapy method,and residual symptoms correlated positively with SDS scores(r=0.354,0.414,0.602,and 0.456,respectively).Independent influencing factors included disease history,medication compliance,therapy method,somatic symptoms,residual symptoms,and anxiety scores(P<0.05).The areas under the curve for predicting social functional impairment using these factors were 0.713,0.559,0.684,0.729,0.668,and 0.628,respectively,with sensitivities of 79.2%,61.8%,76.8%,81.7%,63.6%,and 65.5%and specificities of 83.3%,87.5%,82.6%,83.3%,86.7%,and 92.1%,respectively.CONCLUSION The social function scores of patients with residual symptoms of depression are high.They are affected by disease history,medication compliance,therapy method,degree of somatic symptoms,residual symptoms,and anxiety.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple c...The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.展开更多
·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case gro...·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case group of 122 children less than two years of age with CNLDO who underwent probing and irrigation treatment at the ophthalmology department of Imam Khomeini Hospital in Ahvaz,Iran,from June 2022 to June2024.A control group of 122 age-matched children without CNLDO was also included for comparison.Data was collected from the children's medical records.·RESULTS:The study found a significant correlation between the occurrence of CNLDO and several maternal factors,such as preeclampsia,the use of levothyroxine,hypothyroidism,having more than three pregnancies(gravidity>3),natural pregnancy,and gestational diabetes mellitus.Additionally,in children,factors,such as oxygen therapy,anemia,reflux,jaundice,and a family history of CNLDO in first-degree relatives were associated with CNLDO,and maternal preeclampsia and hypothyroidism were found to significantly increase the risk of developing CNLDO in children.·CONCLUSION:Given that CNLDO affects both premature and full-term children,the present findings may potentially facilitate the early identification of children and infants at risk of nasolacrimal duct obstruction,thereby preventing the onset of chronic dacryocystitis.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh ...This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized.展开更多
The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triti...The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triticina(Pt).However,the molecular mechanism of its interaction with a Pt effector is not clear.We found that Pt effector Pt-1234 interacts with TaNAC069 to subvert host immunity during Pt infection.Quantitative real-time PCR analysis showed that expression of Pt-1234 was significantly upregulated during the early stage of Pt infection.Protein-mediated cell death assays in wheat showed that the Pt-1234 protein was unable to induce cell death in wheat near-isogenic lines carrying different leaf rust resistance genes,whereas it suppressed BAX-induced cell death in leaves of Nicotiana benthamiana.Silencing of Pt-1234 by host-induced gene silencing(HIGS)significantly reduced the virulence of Pt in the susceptible wheat variety Thatcher.The C subdomain of TaNAC069 was responsible for its interaction with Pt-1234,and the E subdomain was required for TaNAC069-mediated defense responses to Pt in planta.These findings indicate that Pt utilizes Pt-1234 to interact with wheat transcription factor TaNAC069 through its C subdomain,thereby modulating wheat immunity.展开更多
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra...Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).展开更多
Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes fa...Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.展开更多
BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double c...BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double center retrospective study included 530 patients diagnosed with AIG from July 2019 to July 2023.We collected clinical,biochemical,serological,and demographic data were of each patient.Logistic regression analyses,both multivariate and univariate,were conducted to pinpoint independent risk factors for GPs in patients with AIG patients.Receiver operating characteristic curves were utilized to establish the optimal cutoff values,sensitivity,and specificity of these risk factors for predicting GPs in patients with AIG.RESULTS Patients with GPs had a higher median age than those without GPs[61(52.25-69)years vs 58(47-66)years,P=0.006].The gastrin-17 levels were significantly elevated in patients with GPs compared with those without GPs[91.9(34.2-138.9)pmol/mL vs 60.9(12.6-98.4)pmol/mL,P<0.001].Additionally,the positive rate of parietal cell antibody(PCA)antibody was higher in these patients than in those without GPs(88.6%vs 73.6%,P<0.001).Multivariate and univariate analyses revealed that PCA positivity[odds ratio(OR)=2.003,P=0.017],pepsinogen II(OR=1.053,P=0.015),and enterochromaffin like cells hyperplasia(OR=3.116,P<0.001)were significant risk factors for GPs,while pepsinogen I was identified as a protective factor.CONCLUSION PCA positivity and enterochromaffin like cells hyperplasia are significant risk factor for the development of GPs in patients with AIG.Elevated gastrin-17 levels may also play a role in this process.These findings suggest potential targets for further research and therapeutic intervention in managing GPs in patients with AIG.展开更多
An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the w...An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the well-known ones of conjugation, transposition, and inversion. The reversal operator operates by ordering the object components where applied. Reversal is easy to perform as it is distributive regarding the vector sum and matrix product. Supplementary descriptions of matrix regions not often used in linear algebra, like the anti-diagonal concept, are also discussed. Some practical problems are given.展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
文摘BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.
基金supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+3 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211)Innovative Research Project for Graduate Students in Hainan Province(Grant Nos.Qhys2023-96,Qhys2023-95).
文摘Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.
文摘The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an influx of migrants drawn by burgeoning industries, leading to unplanned urban growth and the emergence of vulnerable communities like Vila Socó. This article examines the interconnected factors—such as demographic shifts, inadequate planning, and regulatory oversight—that culminated in the devastating fire of 1984, claiming numerous lives and highlighting systemic failures. Utilizing the Haddon Matrix, this study dissects the Vila Socó incident, emphasizing the roles of human error, infrastructure integrity, and socio-economic disparities in disaster causation. By contextualizing the tragedy within Cubatão’s industrial trajectory, it underscores the urgent need for comprehensive risk assessment and proactive mitigation strategies in rapidly developing regions globally. Beyond its immediate focus, this work offers broader insights into the dynamics of industrial disasters and their socio-economic implications. As pipelines continue to play a vital role in global energy infrastructure, the lessons drawn from Vila Socó’s tragedy resonate deeply, emphasizing the imperative of robust safety protocols and accountable governance to prevent similar catastrophes in the future.
文摘BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affecting work and interpersonal communication,increasing the risk of recurrence,and adding to the burden on families.Studying the influencing factors of their social function is of great significance.AIM To explore the social function score and its influencing factors in patients with residual depressive symptoms.METHODS This observational study surveyed patients with residual depressive symptoms(case group)and healthy patients undergoing physical examinations(control group).Participants were admitted between January 2022 and December 2023.Social functioning was assessed using the Sheehan Disability Scale(SDS),and scores were compared between groups.Factors influencing SDS scores in patients with residual depressive symptoms were analyzed by applying multiple linear regression while using the receiver operating characteristic curve,and these RESULTS The SDS scores of the 158 patients with depressive symptoms were 11.48±3.26.Compared with the control group,the SDS scores and all items in the case group were higher.SDS scores were higher in patients with relapse,discon-tinuous medication,drug therapy alone,severe somatic symptoms,obvious residual symptoms,and anxiety scores≥8.Disease history,medication compliance,therapy method,and residual symptoms correlated positively with SDS scores(r=0.354,0.414,0.602,and 0.456,respectively).Independent influencing factors included disease history,medication compliance,therapy method,somatic symptoms,residual symptoms,and anxiety scores(P<0.05).The areas under the curve for predicting social functional impairment using these factors were 0.713,0.559,0.684,0.729,0.668,and 0.628,respectively,with sensitivities of 79.2%,61.8%,76.8%,81.7%,63.6%,and 65.5%and specificities of 83.3%,87.5%,82.6%,83.3%,86.7%,and 92.1%,respectively.CONCLUSION The social function scores of patients with residual symptoms of depression are high.They are affected by disease history,medication compliance,therapy method,degree of somatic symptoms,residual symptoms,and anxiety.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金supported by Research Program for Agricultural Science and Technology Development,Republic of Korea(PJ01570601)the Fellowship Program(PJ01661001)of the National Institute of Agricultural Sciences,Republic of KoreaRural Development Administration,Republic of Korea.
文摘The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.
文摘·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case group of 122 children less than two years of age with CNLDO who underwent probing and irrigation treatment at the ophthalmology department of Imam Khomeini Hospital in Ahvaz,Iran,from June 2022 to June2024.A control group of 122 age-matched children without CNLDO was also included for comparison.Data was collected from the children's medical records.·RESULTS:The study found a significant correlation between the occurrence of CNLDO and several maternal factors,such as preeclampsia,the use of levothyroxine,hypothyroidism,having more than three pregnancies(gravidity>3),natural pregnancy,and gestational diabetes mellitus.Additionally,in children,factors,such as oxygen therapy,anemia,reflux,jaundice,and a family history of CNLDO in first-degree relatives were associated with CNLDO,and maternal preeclampsia and hypothyroidism were found to significantly increase the risk of developing CNLDO in children.·CONCLUSION:Given that CNLDO affects both premature and full-term children,the present findings may potentially facilitate the early identification of children and infants at risk of nasolacrimal duct obstruction,thereby preventing the onset of chronic dacryocystitis.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金Supported by Natural Science Foundation of HuBei Province(2022CFB299).
文摘This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized.
基金funded by State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2023ZZ-10)the National Natural Science Foundation of China(32172384 and 31501623)+1 种基金the Natural Science Foundation of Hebei(C2020204028)the Science and Technology Research Project of Higher Education of Hebei(ZC2023178).
文摘The NAC(NAM,ATAF1/2,and CUC2)is a defense-associated transcription factor(TF)family that positively regulates defense responses to pathogen infection.TaNAC069 positively regulates resistance in wheat to Puccinia triticina(Pt).However,the molecular mechanism of its interaction with a Pt effector is not clear.We found that Pt effector Pt-1234 interacts with TaNAC069 to subvert host immunity during Pt infection.Quantitative real-time PCR analysis showed that expression of Pt-1234 was significantly upregulated during the early stage of Pt infection.Protein-mediated cell death assays in wheat showed that the Pt-1234 protein was unable to induce cell death in wheat near-isogenic lines carrying different leaf rust resistance genes,whereas it suppressed BAX-induced cell death in leaves of Nicotiana benthamiana.Silencing of Pt-1234 by host-induced gene silencing(HIGS)significantly reduced the virulence of Pt in the susceptible wheat variety Thatcher.The C subdomain of TaNAC069 was responsible for its interaction with Pt-1234,and the E subdomain was required for TaNAC069-mediated defense responses to Pt in planta.These findings indicate that Pt utilizes Pt-1234 to interact with wheat transcription factor TaNAC069 through its C subdomain,thereby modulating wheat immunity.
基金supported by the STI 2030-Major Projects,No. 2021ZD0200500 (to XS)。
文摘Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).
文摘Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.
基金Supported by the Health Technology Project of Pudong New District Health Commission,No.PW2020D-12.
文摘BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double center retrospective study included 530 patients diagnosed with AIG from July 2019 to July 2023.We collected clinical,biochemical,serological,and demographic data were of each patient.Logistic regression analyses,both multivariate and univariate,were conducted to pinpoint independent risk factors for GPs in patients with AIG patients.Receiver operating characteristic curves were utilized to establish the optimal cutoff values,sensitivity,and specificity of these risk factors for predicting GPs in patients with AIG.RESULTS Patients with GPs had a higher median age than those without GPs[61(52.25-69)years vs 58(47-66)years,P=0.006].The gastrin-17 levels were significantly elevated in patients with GPs compared with those without GPs[91.9(34.2-138.9)pmol/mL vs 60.9(12.6-98.4)pmol/mL,P<0.001].Additionally,the positive rate of parietal cell antibody(PCA)antibody was higher in these patients than in those without GPs(88.6%vs 73.6%,P<0.001).Multivariate and univariate analyses revealed that PCA positivity[odds ratio(OR)=2.003,P=0.017],pepsinogen II(OR=1.053,P=0.015),and enterochromaffin like cells hyperplasia(OR=3.116,P<0.001)were significant risk factors for GPs,while pepsinogen I was identified as a protective factor.CONCLUSION PCA positivity and enterochromaffin like cells hyperplasia are significant risk factor for the development of GPs in patients with AIG.Elevated gastrin-17 levels may also play a role in this process.These findings suggest potential targets for further research and therapeutic intervention in managing GPs in patients with AIG.
文摘An in-depth description of an apparently forgotten matrix operation, the reversal operator, is developed. The properties of such an operation are also given, resulting in a new vector-matrix operation resembling the well-known ones of conjugation, transposition, and inversion. The reversal operator operates by ordering the object components where applied. Reversal is easy to perform as it is distributive regarding the vector sum and matrix product. Supplementary descriptions of matrix regions not often used in linear algebra, like the anti-diagonal concept, are also discussed. Some practical problems are given.
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.