The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory d...The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.展开更多
The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution;...The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution; primal CO is generated through coalification, which can lead to forecasting mistakes. Through theoretical analysis, primal CO generation and emission from coal seams was determined.In this study, six coal samples were analyzed under six different experimental conditions. The results demonstrated the change in coal seam primal gas and concentration as functions of time, different coal samples, occurrence, various gas types and composition concentration, which are in agreement with the previous study on primal CO generation. Air charging impacts on primal gas emission. Analysis of the experimental data with SPSS demonstrates that the relationship between primal CO concentration and time shows a power exponent distribution.展开更多
基金Projects(51274099,51474106)supported by the National Natural Science Foundation of China
文摘The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as "K". The ratio of each index gas and value of "K", and the ratio of combination index gases and value of "K", were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C_2H_4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value of Φ(C_2H_6)/Φ(C_2H_2) and Φ(C_2H_6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.
基金provided by the National Natural Science Foundation of China(No.U1261214)
文摘The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution; primal CO is generated through coalification, which can lead to forecasting mistakes. Through theoretical analysis, primal CO generation and emission from coal seams was determined.In this study, six coal samples were analyzed under six different experimental conditions. The results demonstrated the change in coal seam primal gas and concentration as functions of time, different coal samples, occurrence, various gas types and composition concentration, which are in agreement with the previous study on primal CO generation. Air charging impacts on primal gas emission. Analysis of the experimental data with SPSS demonstrates that the relationship between primal CO concentration and time shows a power exponent distribution.