In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the ...In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.展开更多
In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the...In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.展开更多
The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical...The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed t...Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.展开更多
A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The...A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.展开更多
基金Ministry of Science and Technology of China Under Grant No.SLDRCE09-B-12Natural Science Funds for Young Scholars of China Under Grant No.50808144
文摘In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.
基金the Natural Science Fundation of China for the Innovative Research Group of China Under Grant No. 50621062
文摘In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.
基金Natural Science Funds for the Innovative Research Group of China Under Grant No.50621062
文摘The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
文摘Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
基金Foundation of the Academy of Electronic Science,China
文摘A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.