期刊文献+
共找到1,286篇文章
< 1 2 65 >
每页显示 20 50 100
Advancing Material Stability Prediction: Leveraging Machine Learning and High-Dimensional Data for Improved Accuracy
1
作者 Aasim Ayaz Wani 《Materials Sciences and Applications》 2025年第2期79-105,共27页
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a... Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis. 展开更多
关键词 High-Throughput Screening for Material Discovery Machine learning data-driven Structural Stability Analysis AI for Chemical Space Exploration Interpretable ML Models for Material Stability Thermodynamic Property Prediction Using AI
在线阅读 下载PDF
Machine Learning for 5G and Beyond:From ModelBased to Data-Driven Mobile Wireless Networks 被引量:12
2
作者 Tianyu Wang Shaowei Wang Zhi-Hua Zhou 《China Communications》 SCIE CSCD 2019年第1期165-175,共11页
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i... During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes. 展开更多
关键词 mobile wireless networks data-driven PARADIGM MACHINE learning
在线阅读 下载PDF
A deep learning driven hybrid beamforming method for millimeter wave MIMO system
3
作者 Jienan Chen Jiyun Tao +3 位作者 Siyu Luo Shuai Li Chuan Zhang Wei Xiang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1291-1300,共10页
The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware... The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI). 展开更多
关键词 Hybrid beamforming Neural network Deep learning driven Non-orthogonal beamforming
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions
4
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Predictive Analytics for Project Risk Management Using Machine Learning
5
作者 Sanjay Ramdas Bauskar Chandrakanth Rao Madhavaram +3 位作者 Eswar Prasad Galla Janardhana Rao Sunkara Hemanth Kumar Gollangi Shravan Kumar Rajaram 《Journal of Data Analysis and Information Processing》 2024年第4期566-580,共15页
Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on ... Risk management is relevant for every project that which seeks to avoid and suppress unanticipated costs, basically calling for pre-emptive action. The current work proposes a new approach for handling risks based on predictive analytics and machine learning (ML) that can work in real-time to help avoid risks and increase project adaptability. The main research aim of the study is to ascertain risk presence in projects by using historical data from previous projects, focusing on important aspects such as time, task time, resources and project results. t-SNE technique applies feature engineering in the reduction of the dimensionality while preserving important structural properties. This process is analysed using measures including recall, F1-score, accuracy and precision measurements. The results demonstrate that the Gradient Boosting Machine (GBM) achieves an impressive 85% accuracy, 82% precision, 85% recall, and 80% F1-score, surpassing previous models. Additionally, predictive analytics achieves a resource utilisation efficiency of 85%, compared to 70% for traditional allocation methods, and a project cost reduction of 10%, double the 5% achieved by traditional approaches. Furthermore, the study indicates that while GBM excels in overall accuracy, Logistic Regression (LR) offers more favourable precision-recall trade-offs, highlighting the importance of model selection in project risk management. 展开更多
关键词 Predictive Analytics Project Risk Management DECISION-MAKING data-driven Strategies Risk Prediction Machine learning Historical Data
在线阅读 下载PDF
e-Learning环境学习测量研究进展与趋势——基于眼动应用视角 被引量:13
6
作者 张琪 杨玲玉 《中国电化教育》 CSSCI 北大核心 2016年第11期68-73,共6页
"日益关注学习测量"已成为教育变革的重要趋势,e-Learning环境学习测量的研究正日益突显多维整体、真实境脉、实时连续的特征。该文通过眼动应用视角透析e-Learning环境学习测量研究的进展与趋势。基于信息加工论、"直... "日益关注学习测量"已成为教育变革的重要趋势,e-Learning环境学习测量的研究正日益突显多维整体、真实境脉、实时连续的特征。该文通过眼动应用视角透析e-Learning环境学习测量研究的进展与趋势。基于信息加工论、"直接假说"和"眼脑假说",阐释眼动在信息提取、加工、整合以及意义建构中的重要作用。此外,围绕多媒体界面有效性、多媒体学习效果、数字阅读、信息加工过程和学习分析五个方面,对研究内容、研究结果和发展趋势进行梳理与分析。研究认为眼动技术有助于获取具备"大数量、全样本、实时性、微观指向"特性的学习数据,可以深入评估多媒体学习效果和阅读过程,量化注意力、认知过程和学习结果之间的关系,为拓展教育技术的研究手段和应用领域提供了方向指引。 展开更多
关键词 E-learning 数据驱动教学 学习测量 眼动范式
在线阅读 下载PDF
基于生态视角下的B-Learning学习模式探究——以《现代教育技术》课程为例 被引量:1
7
作者 黄燕 李红 《大众科技》 2017年第6期120-122,共3页
从生态学角度来看,学校教育是一个相对平衡的生态系统;而混合学习,则是互联网大环境下的一种学习理念。文章将两者结合,站在生态学的角度,探讨《现代教育技术》的混合学习,期望能为课改环境下的公共课程教学模式提供借鉴与参考。
关键词 混合学习 教学模式 教育生态学 任务驱动
在线阅读 下载PDF
Learning by doing方法在移动平台应用开发课中的应用
8
作者 李涵 《实验室科学》 2018年第6期111-113,共3页
"嵌入式移动平台应用开发"课程是电子信息科学与技术专业的专业课,以培养学生的嵌入式软件开发能力为目的。将Learning by doing教学模式应用到嵌入式移动平台应用开发课程中,通过改革授课方式、教学内容组织以及考核方式,使... "嵌入式移动平台应用开发"课程是电子信息科学与技术专业的专业课,以培养学生的嵌入式软件开发能力为目的。将Learning by doing教学模式应用到嵌入式移动平台应用开发课程中,通过改革授课方式、教学内容组织以及考核方式,使学生在做中理解所学的知识,融会贯通,实操能力和编程动手能力得到提高。通过实践,取得了良好的教学效果,培养了学生的创新精神和解决实际问题的能力。 展开更多
关键词 learning by DOING 项目驱动 教学改革 嵌入式移动平台应用开发
在线阅读 下载PDF
Vision for energy material design:A roadmap for integrated data-driven modeling 被引量:4
9
作者 Zhilong Wang Yanqiang Han +2 位作者 Junfei Cai An Chen Jinjin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期56-62,I0003,共8页
The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
关键词 Energy materials Material attributes Machine learning Data driven
在线阅读 下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
10
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 Data mining data-driven USER-driven domain-driven KDD Machine learning Knowledge Acquisition rough sets
在线阅读 下载PDF
Data-driven simulation in fluids animation: A survey
11
作者 Qian CHEN Yue WANG +1 位作者 Hui WANG Xubo YANG 《Virtual Reality & Intelligent Hardware》 2021年第2期87-104,共18页
The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in c... The field of fluid simulation is developing rapidly,and data-driven methods provide many frameworks and techniques for fluid simulation.This paper presents a survey of data-driven methods used in fluid simulation in computer graphics in recent years.First,we provide a brief introduction of physical based fluid simulation methods based on their spatial discretization,including Lagrangian,Eulerian,and hybrid methods.The characteristics of these underlying structures and their inherent connection with data driven methodologies are then analyzed.Subsequently,we review studies pertaining to a wide range of applications,including data-driven solvers,detail enhancement,animation synthesis,fluid control,and differentiable simulation.Finally,we discuss some related issues and potential directions in data-driven fluid simulation.We conclude that the fluid simulation combined with data-driven methods has some advantages,such as higher simulation efficiency,rich details and different pattern styles,compared with traditional methods under the same parameters.It can be seen that the data-driven fluid simulation is feasible and has broad prospects. 展开更多
关键词 Fluid simulation Data driven Machine learning
在线阅读 下载PDF
基于多智能体深度强化学习的随机事件驱动故障恢复策略
12
作者 王冲 石大夯 +3 位作者 万灿 陈霞 吴峰 鞠平 《电力自动化设备》 北大核心 2025年第3期186-193,共8页
为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢... 为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢复优化目标,构建基于半马尔可夫的随机事件驱动故障恢复模型;利用多智能体深度强化学习算法对所构建的随机事件驱动模型进行求解。在IEEE 33节点配电网与Sioux Falls市交通网形成的电力交通耦合系统中进行算例验证,结果表明所提模型和方法在电力交通耦合网故障恢复中有着较好的应用效果,可实时调控由随机事件(故障维修和交通行驶)导致的故障恢复变化。 展开更多
关键词 随机事件驱动 故障恢复 深度强化学习 电力交通耦合网 多智能体
在线阅读 下载PDF
Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management:Review and Case Study
13
作者 Ruqiang Yan Zheng Zhou +6 位作者 Zuogang Shang Zhiying Wang Chenye Hu Yasong Li Yuangui Yang Xuefeng Chen Robert X.Gao 《Chinese Journal of Mechanical Engineering》 2025年第1期31-61,共31页
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret... Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM. 展开更多
关键词 PHM Knowledge driven machine learning Signal processing Physics informed Interpretability
在线阅读 下载PDF
给排水专业课程建设与教学改革探索——以水质工程学课程为例
14
作者 欧阳二明 赵瑞 +3 位作者 陈战利 黄小华 杨宏伟 石磊 《高教学刊》 2025年第8期154-157,162,共5页
随着社会和科技的飞速发展,作为传统工科的给排水科学与工程专业正面临着新时代的机遇与挑战。该文针对当前给排水科学与工程专业现状展开探讨,分析目前给排水科学与工程专业课教学存在的主要问题,提出相应的教学改革原则,归纳总结翻转... 随着社会和科技的飞速发展,作为传统工科的给排水科学与工程专业正面临着新时代的机遇与挑战。该文针对当前给排水科学与工程专业现状展开探讨,分析目前给排水科学与工程专业课教学存在的主要问题,提出相应的教学改革原则,归纳总结翻转课堂、项目驱动、问题驱动和电子学习这几种教学方法的定义、特点,并以此构建新型立体教学模式,结合其在水质工程学课程中的应用与效果,进行效果评价并揭示这一模式对提升教学效果的积极作用,总结教改成果并展望未来给排水科学与工程专业课程建设与教学改革的发展方向。 展开更多
关键词 水质工程学 教学方法 翻转课堂 问题驱动 项目驱动 电子学习
在线阅读 下载PDF
数据驱动的个性化学习:实然问题、应然逻辑与实现路径
15
作者 钟绍春 杨澜 范佳荣 《电化教育研究》 北大核心 2025年第1期13-19,33,共8页
教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高... 教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高、学习特征挖掘不准、学习规律挖掘不全、学习问题溯源不深、学习干预精度不佳等瓶颈性难题。为此,研究从情境感知、主体理解和智能干预等方面深入剖析了数据驱动个性化学习的应然逻辑。在此基础上,从学习行为数据有效感知与理解、学习效果精准评估的个性化学习追踪、薄弱知识点和异常学习行为的学习问题成因溯源、潜在交互学习规律发现的教育知识图谱高阶推理、公共学习路网构建与高适配个性化学习路径规划等方面,讨论了数据驱动个性化学习的实现路径和方法。 展开更多
关键词 个性化学习 数据驱动 情境感知 学习路径规划 教育知识图谱
在线阅读 下载PDF
数据驱动在内弹道中的应用与展望
16
作者 张小兵 李湉湉 《弹道学报》 北大核心 2025年第1期1-8,共8页
近年来,数据驱动方法受到广泛关注和研究,数据驱动为内弹道的发展提供了新的研究范式,具有广阔的应用前景和发展潜力。该文总结了近几年数据驱动方法在内弹道领域的相关研究成果,主要介绍了基于数据驱动的内弹道建模技术,以及基于数据... 近年来,数据驱动方法受到广泛关注和研究,数据驱动为内弹道的发展提供了新的研究范式,具有广阔的应用前景和发展潜力。该文总结了近几年数据驱动方法在内弹道领域的相关研究成果,主要介绍了基于数据驱动的内弹道建模技术,以及基于数据驱动的内弹道性能优化方法。该文还讨论了相关研究所面临的挑战,并指出了未来值得进一步研究的方向。 展开更多
关键词 内弹道 数据驱动 神经网络 机器学习
在线阅读 下载PDF
基于物理驱动支持向量机方法的地震作用下结构动力响应求解
17
作者 杜轲 吴文贤 +1 位作者 林志鹏 骆欢 《振动与冲击》 北大核心 2025年第3期284-290,共7页
物理驱动机器学习是一种将物理原理融入机器学习框架的前沿方法。通过引入物理知识,该方法旨在使模型更为贴合实际世界的物理规律和约束,以提高模型在学习过程中对数据本质特征的准确捕捉。该研究使用了一种以支持向量机为基础的物理驱... 物理驱动机器学习是一种将物理原理融入机器学习框架的前沿方法。通过引入物理知识,该方法旨在使模型更为贴合实际世界的物理规律和约束,以提高模型在学习过程中对数据本质特征的准确捕捉。该研究使用了一种以支持向量机为基础的物理驱动方法,用于精确计算结构的动力响应。该算法通过最小化多输出最小二乘支持向量机的目标函数,实现了对回归模型参数的精准拟合。同时,通过在特征空间中引入系统动态平衡方程和初始条件的物理约束,无需事先训练数据即可有效计算结构的动力响应。随后开展在地震动荷载作用下的单自由度体系和二层剪切框架多自由度体系的动力响应,并将所用方法与传统方法的结果进行了对比。分析结果表明,提出的物理驱动机器学习方法在精度和大时间步长性能方面均显著优于传统方法。 展开更多
关键词 机器学习 支持向量机 物理驱动 无标记数据 结构动力响应分析
在线阅读 下载PDF
科创背景下的高职项目化教学模式探索与实践——以“智能电子产品设计”为例
18
作者 高云华 周伟 《江苏经贸职业技术学院学报》 2025年第1期84-87,共4页
“智能电子产品设计”是电子类专业的一门专业核心课程,旨在帮助学生掌握嵌入式产品开发流程和常用工具,具备较强的嵌入式系统的设计、分析与调试能力。在项目驱动式教学中关注学生的个性化需求和创新能力的养成,对接“1+X”职业证书标... “智能电子产品设计”是电子类专业的一门专业核心课程,旨在帮助学生掌握嵌入式产品开发流程和常用工具,具备较强的嵌入式系统的设计、分析与调试能力。在项目驱动式教学中关注学生的个性化需求和创新能力的养成,对接“1+X”职业证书标准,通过师生科研共进、校企深入合作、以赛促教促学、乐学共同体等形式优化课程教学,构建“多维动态”学习评价体系,可以不断提高学生的创新实践能力。 展开更多
关键词 项目驱动 创新能力 “1+X”证书 多维动态 乐学共同体
在线阅读 下载PDF
指向深度学习的线上线下混合式教学模式应用研究
19
作者 赵瑾婷 《天津职业大学学报》 2025年第2期52-56,71,共6页
结合深度学习理论、混合式教学模式的特点,构建指向深度学习的混合式教学模式,在专业课《商业银行信贷实务》中进行实践应用,并利用自主开发的深度学习能力评价量表对课程实施后的学习效果进行了测量。结果表明,通过“线上+线下”的混... 结合深度学习理论、混合式教学模式的特点,构建指向深度学习的混合式教学模式,在专业课《商业银行信贷实务》中进行实践应用,并利用自主开发的深度学习能力评价量表对课程实施后的学习效果进行了测量。结果表明,通过“线上+线下”的混合式教学,教师营造有意义的学习氛围,激发学生自主学习的热情,引导学生完成知识的意义建构和能力培养,深化迁移应用知识能力解决真实问题,学生的深度学习能力得到显著提升。 展开更多
关键词 深度学习 混合式教学模式 教学实践 任务驱动
在线阅读 下载PDF
基于改进麻雀搜索算法的建筑综合能源系统优化调度
20
作者 张春霞 《山东电力技术》 2025年第2期23-31,共9页
建筑综合能源系统(building integrated energy system,BIES)多能供应耦合度增强与可再生能源波动性较大,导致BIES的多能供应最优策略求解较为困难。为解决上述问题,提出一种基于Logistic混沌映射与自适应t分布改进麻雀搜索算法(Logisti... 建筑综合能源系统(building integrated energy system,BIES)多能供应耦合度增强与可再生能源波动性较大,导致BIES的多能供应最优策略求解较为困难。为解决上述问题,提出一种基于Logistic混沌映射与自适应t分布改进麻雀搜索算法(Logistic-t-sparrow search algorithm sparrow search algorithm,Logistic-t-SSA)的BIES优化调度方法。首先,建立BIES多能流模型,并构建包含价格型与调节型的综合需求响应模型(integrated demand response,IDR);其次,构建基于长短时记忆网络(long short-term memory,LSTM)与迁移学习(transfer learning,TF)的预测模型来实现未来24 h的负荷预测;然后,建立BIES优化调度模型,提出了一种Logistic-t-SSA算法,并用该算法对模型进行求解;最后,通过仿真结果表明,在考虑IDR的情况下,采用Logistic-t-SSA算法求解BIES的最优运行策略,可有效提高建筑能源系统的经济效益,降低用户负荷的峰谷差。 展开更多
关键词 建筑综合能源系统 综合需求响应 优化调度 数据驱动 迁移学习 相似度分析 LSTM Logistic-t-SSA
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部