The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or m...The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c...Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and...The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
The growing sophistication of cyberthreats,among others the Distributed Denial of Service attacks,has exposed limitations in traditional rule-based Security Information and Event Management systems.While machine learn...The growing sophistication of cyberthreats,among others the Distributed Denial of Service attacks,has exposed limitations in traditional rule-based Security Information and Event Management systems.While machine learning–based intrusion detection systems can capture complex network behaviours,their“black-box”nature often limits trust and actionable insight for security operators.This study introduces a novel approach that integrates Explainable Artificial Intelligence—xAI—with the Random Forest classifier to derive human-interpretable rules,thereby enhancing the detection of Distributed Denial of Service(DDoS)attacks.The proposed framework combines traditional static rule formulation with advanced xAI techniques—SHapley Additive exPlanations and Scoped Rules-to extract decision criteria from a fully trained model.The methodology was validated on two benchmark datasets,CICIDS2017 and WUSTL-IIOT-2021.Extracted rules were evaluated against conventional Security Information and Event Management Systems rules with metrics such as precision,recall,accuracy,balanced accuracy,and Matthews Correlation Coefficient.Experimental results demonstrate that xAI-derived rules consistently outperform traditional static rules.Notably,the most refined xAI-generated rule achieved near-perfect performance with significantly improved detection of DDoS traffic while maintaining high accuracy in classifying benign traffic across both datasets.展开更多
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m...DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.展开更多
With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originatin...With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.展开更多
The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,securit...The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.展开更多
The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s o...The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s outstanding issues.However,despite the advantages of centralized control,concern about its security is rising.The more traditional network switched to SDN technology,the more attractive it becomes to malicious actors,especially the controller,because it is the network’s brain.A Distributed Denial of Service(DDoS)attack on the controller could cripple the entire network.For that reason,researchers are always looking for ways to detect DDoS attacks against the controller with higher accuracy and lower false-positive rate.This paper proposes an entropy-based approach to detect low-rate and high-rate DDoS attacks against the SDN controller,regardless of the number of attackers or targets.The proposed approach generalized the Rényi joint entropy for analyzing the network traffic flow to detect DDoS attack traffic flow of varying rates.Using two packet header features and generalized Rényi joint entropy,the proposed approach achieved a better detection rate than the EDDSC approach that uses Shannon entropy metrics.展开更多
An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to pro...An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to provide good service to legitimate traffic under DDoS attacking, with fast reaction. This approach adopts the technique of dynamic comb filter, yields a low level of false positives of less than 1.5%, drops similar percentage of good traffic, about 1%, and passes neglectable percentage of attack bandwidth to the victim, less than 1.5%. The prototype of commercial product, D-fighter, is developed by implementing this proposed approach on Intel network processor platform IXP1200.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ...Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.展开更多
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de...Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c...The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.展开更多
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01239)National Natural Science Foundation of China(No.52177119)Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform).
文摘Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
文摘The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金funded under the Horizon Europe AI4CYBER Projectwhich has received funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement No.101070450.
文摘The growing sophistication of cyberthreats,among others the Distributed Denial of Service attacks,has exposed limitations in traditional rule-based Security Information and Event Management systems.While machine learning–based intrusion detection systems can capture complex network behaviours,their“black-box”nature often limits trust and actionable insight for security operators.This study introduces a novel approach that integrates Explainable Artificial Intelligence—xAI—with the Random Forest classifier to derive human-interpretable rules,thereby enhancing the detection of Distributed Denial of Service(DDoS)attacks.The proposed framework combines traditional static rule formulation with advanced xAI techniques—SHapley Additive exPlanations and Scoped Rules-to extract decision criteria from a fully trained model.The methodology was validated on two benchmark datasets,CICIDS2017 and WUSTL-IIOT-2021.Extracted rules were evaluated against conventional Security Information and Event Management Systems rules with metrics such as precision,recall,accuracy,balanced accuracy,and Matthews Correlation Coefficient.Experimental results demonstrate that xAI-derived rules consistently outperform traditional static rules.Notably,the most refined xAI-generated rule achieved near-perfect performance with significantly improved detection of DDoS traffic while maintaining high accuracy in classifying benign traffic across both datasets.
基金supported by the National Science and Technology Council,Taiwan with grant numbers NSTC 112-2221-E-992-045,112-2221-E-992-057-MY3,and 112-2622-8-992-009-TD1.
文摘DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.
基金This work was supported in part by the National Key R&D Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 61922049,and Grant 61941104in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.
文摘With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.
基金This work was supported by Universiti Sains Malaysia under external grant(Grant Number 304/PNAV/650958/U154).
文摘The emergence of a new network architecture,known as Software Defined Networking(SDN),in the last two decades has overcome some drawbacks of traditional networks in terms of performance,scalability,reliability,security,and network management.However,the SDN is vulnerable to security threats that target its controller,such as low-rate Distributed Denial of Service(DDoS)attacks,The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component.Therefore,there is an urgent need to propose a detection approach for this type of attack with a high detection rate and low false-positive rates.Thus,this paper proposes an approach to detect low-rate DDoS attacks on the SDN controller by adapting a dynamic threshold.The proposed approach has been evaluated using four simulation scenarios covering a combination of low-rate DDoS attacks against the SDN controller involving(i)a single host attack targeting a single victim;(ii)a single host attack targeting multiple victims;(iii)multiple hosts attack targeting a single victim;and(iv)multiple hosts attack targeting multiple victims.The proposed approach’s average detection rates are 96.65%,91.83%,96.17%,and 95.33%for the above scenarios,respectively;and its average false-positive rates are 3.33%,8.17%,3.83%,and 4.67%for similar scenarios,respectively.The comparison between the proposed approach and two existing approaches showed that it outperformed them in both categories.
基金This work was supported by Universiti Sains Malaysia under external grant(Grant Number 304/PNAV/650958/U154).
文摘The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s outstanding issues.However,despite the advantages of centralized control,concern about its security is rising.The more traditional network switched to SDN technology,the more attractive it becomes to malicious actors,especially the controller,because it is the network’s brain.A Distributed Denial of Service(DDoS)attack on the controller could cripple the entire network.For that reason,researchers are always looking for ways to detect DDoS attacks against the controller with higher accuracy and lower false-positive rate.This paper proposes an entropy-based approach to detect low-rate and high-rate DDoS attacks against the SDN controller,regardless of the number of attackers or targets.The proposed approach generalized the Rényi joint entropy for analyzing the network traffic flow to detect DDoS attack traffic flow of varying rates.Using two packet header features and generalized Rényi joint entropy,the proposed approach achieved a better detection rate than the EDDSC approach that uses Shannon entropy metrics.
基金Supported by the National High Technology Research and Development Program of China (863 Program)(No.2003AA142080, 2005AA775060)the National Natural Sicence Foundation of China(No.60203004)National Basic Research Program of China (973Program) (No.2003CB314805)the National Outstanding Youth Foundation (No.60325102)
文摘An approach of defending against Distributed Denial of Service (DDoS) attack based on flow model and flow detection is presented. The proposed approach can protect targets from DDoS attacking, and allow targets to provide good service to legitimate traffic under DDoS attacking, with fast reaction. This approach adopts the technique of dynamic comb filter, yields a low level of false positives of less than 1.5%, drops similar percentage of good traffic, about 1%, and passes neglectable percentage of attack bandwidth to the victim, less than 1.5%. The prototype of commercial product, D-fighter, is developed by implementing this proposed approach on Intel network processor platform IXP1200.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
文摘Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.
文摘Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
基金the Six Heights of Talent in Jiangsu Prov-ince(No.06-E-044).
文摘The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.