BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and ...BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kina...Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.展开更多
Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy ...Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy (DAPT) has been indicated in this group, however, DAPT significantly increases the risk of bleeding. Objectives: This study aimed to evaluate aspirin versus clopidogrel and aspirin on major adverse cardiac and cerebrovascular events (MACCE) and risk of bleeding in individuals already on DAPT for one year after undergoing PCI. Methods: This was a single-center, double-arm, interventional, prospective study. A total of 956 individuals who had undergone PCI and were on DAPT for a year were enrolled. After calculating DAPT scores, individuals with DAPT scores ≥2 were assigned to the aspirin and clopidogrel group, and those with DAPT scores Results: The group on clopidogrel and aspirin demonstrated a significantly lower rate of MACCE when compared to those on aspirin alone (p = 0.003). However, stent thrombosis, stroke, and myocardial infarction (MI) did not significantly differ in an inter-group comparison. The rate of moderate bleeding was greater in the clopidogrel group;however, the difference was not found to be statistically significant (p = 0.19). Conclusions: Continuing DAPT for a period between 12 and 24 months after PCI in individuals with a DAPT score ≥2 had favorable outcomes in reducing coronary adverse events without resulting in significant bleeding.展开更多
The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas sh...The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.展开更多
The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary mate...The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.展开更多
This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named C...This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to ...BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to complications such as Bar-rett’s esophagus and esophagitis.Conventional proton pump inhibitors(PPIs)often fail to reduce nocturnal acid production,leaving patients with unresolved symptoms that worsen at night and decreased satisfaction.Happi ER,a novel dual delayed-release(DDR)formulation of rabeprazole,aims to address these limitations by providing both immediate and prolonged acid suppression.AIM To evaluate the safety and effectiveness of rabeprazole DDR 20 mg capsule in patients with GERD.METHODS This study involved a multicenter,real-world,prospective,observational design over an eight-week period.A total of 1022 GERD patients were treated with rabeprazole DDR 20 mg capsules(Happi ER),as prescribed by their physicians.We included adult patients with confirmed GERD and persistent heartburn symptoms despite prior PPI use.Outcome measures included heartburn severity,frequency of night-time awakenings,use of rescue medications,and overall patient satisfaction.RESULTS Rabeprazole DDR 20 mg capsules(Happi ER)were shown to be highly effective in treating GERD symptoms.At the end of the study,the mean heartburn score improved significantly from 2.46±0.67 at baseline to 0.16±0.39(P<0.0001).The median number of night-time awakenings decreased to 0(P<0.0001).More than 93%of patients rated the therapy as“excellent”or“very good”,reflecting high satisfaction.No significant adverse effects were reported,and the safety profile was comparable to that of traditional PPIs.CONCLUSION By providing both rapid and sustained acid suppression,Happi ER effectively treats GERD,particularly with respect to night-time symptoms.Its safety and efficacy profile make it a viable option for individuals with mild-to-moderate GERD,significantly improving the quality of life and symptom management.展开更多
BACKGROUND Effective acid suppression significantly enhances the eradication rate of Helicobacter pylori(H.pylori).AIM To assess the efficacy and safety of high-dose dual therapy(HDDT)utilizing various highly potent a...BACKGROUND Effective acid suppression significantly enhances the eradication rate of Helicobacter pylori(H.pylori).AIM To assess the efficacy and safety of high-dose dual therapy(HDDT)utilizing various highly potent antisecretory medications,thereby providing additional clinical guidance for H.pylori eradication.METHODS The study population comprised untreated H.pylori patients from three medical centers in central China.From February 10,2024 to March 31,2024,439 subjects were randomly allocated to either the esomeprazole-amoxicillin(EA)or esomeprazole-amoxicillin-clarithromycin-bismuth(B-quadruple)group.Subsequently,from April 1,2024 to May 10,2024,367 subjects were randomly assigned to either the vonoprazan-amoxicillin(VA)or vonoprazan-amoxicillin-clarithromycin(VAC)group.The study recorded treatment efficacy,adverse events,compliance,symptom alleviation,and associated costs.RESULTS EA-dual demonstrated non-inferiority to B-quadruple regimen in modified intention-to-treat(mITT)and perprotocol(PP)analyses(P<0.025).However,the eradication rate of EA was lower than that of the B-quadruple group[70.59%vs 83.49%,92.86%vs 98.38%,93.94%vs 98.38%,intention-to-treat(ITT),mITT,PP respectively,P<0.05].In ITT,mITT,and PP analyses,VA-dual was non-inferior to VAC treatment(84.15%vs 83.15%,96.25%vs 92.73%,96.75%vs 93.75%,P<0.025).No significant differences were observed in adverse events,compliance,and symptom relief between groups.VA exhibited the lowest cost.Antibiotic use within 2 years,poor compliance,and suburban residence were associated with reduced eradication efficacy(P<0.05).CONCLUSION The HDDT based on vonoprazan demonstrated non-inferiority to the VAC triple regimen,suggesting its potential as a recommended first-line treatment for H.pylori eradication.While B-quadruple therapy showed better eradication rate than EA therapy,the latter proved non-inferior in mITT and PP analyses.Notably,antibiotic use within the preceding two years,adherence to treatment protocols,and patient residence emerged as critical factors influencing eradication success.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compare...The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets.展开更多
One-step direct production of methanol from methane and water(PMMW)under mild conditions is challenging in heterogeneous catalysis owing to the absence of highly effective catalysts.Herein,we designed a series of“Sin...One-step direct production of methanol from methane and water(PMMW)under mild conditions is challenging in heterogeneous catalysis owing to the absence of highly effective catalysts.Herein,we designed a series of“Single-Atom”-“Frustrated Lewis Pair”(SA-FLP)dual active sites for the direct PMMW via density functional theory(DFT)calculations combined with a machine learning(ML)approach.The results indicate that the nine designed SA-FLP catalysts are capable of efficiently activate CH4 and H_(2)O and facilitate the coupling of OH^(*)and CH_(3)^(*)into methanol.The DFT-based microkinetic simulation(MKM)results indicate that CH_(3)OH production on Co1-FLP and Pt1-FLP catalysts can reach the turnover frequencies(TOFs)of 1.01×10^(−3)s^(-1)and 8.80×10^(−4)s^(-1),respectively,which exceed the experimentally reported values by three orders of magnitude.ML results unveil that the gradient boosted regression model with 13 simple features could give satisfactory predictions for the TOFs of CH_(3)OH production with RMSE and R^(2)of 0.009 s^(-1)and 1.00,respectively.The ML-predicted MKM results indicate that four catalysts including V_(1-),Fe_(1-),Ti_(1-),and Mn_(1)-FLP exhibit higher TOFs of CH_(3)OH production than the value that the most relevant experiments reported,indicating that the four catalysts are also promising catalysts for the PMMW.This study not only develops a simple and efficient approach for design and screening SA-FLP catalysts but also provides mechanistic insights into the direct PMMW.展开更多
In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The p...In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The proof is adapted from Guan-Li[17]and Chen-Tu-Wu-Xiang[11].展开更多
Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymer...Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers(MIPs).To implement this synergistic strategy,bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications(PIMs)onto mesoporous silica nanosheets.The prepared sorbents(denoted as‘‘D-PMIPs”)were utilized to improve the specific identification of adenosine 5-monophosphate(AMP).Significantly,the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m^(2)·g^(-1),which facilitates the formation of abundant specific recognition sites in the D-PMIPs.The dual covalent receptors are valuable for estab-lishing the spatial orientation and arrangement of AMP through multiple cooperative interactions.PIMs enable precise site-specific functionalization within the imprinted cavities,leading to the tailor-made formation of complementary binding sites.The maximum number of high-affinity binding sites(Nmax)of the D-PMIPs is 39.99 lmol·g^(-1),which is significantly higher than that of imprinted sorbents with a sin-gle receptor(i.e.,S-BMIPs or S-PMIPs).The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model,indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base.This study suggests that using dual cova-lent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity,allow-ing for the controlled engineering of imprinted sites.展开更多
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,...Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.展开更多
Emerging as lamellar materials,covalent triazine frameworks(CTFs)exhibited great potential for photocatalysis,but their photocatalytic performance is always hindered by the prone recombination of photogenerated carrie...Emerging as lamellar materials,covalent triazine frameworks(CTFs)exhibited great potential for photocatalysis,but their photocatalytic performance is always hindered by the prone recombination of photogenerated carriers.To overcome this obstacle,a 1D/2D step-scheme(S-scheme)heterojunction is constructed for photocatalytic synthesis of H_(2)O_(2).The S-scheme heterojunction fabricated with CTF and ZnO effectively enhances light absorption,redox capabilities,and charge carrier separation and transfer.In particular,the CTF is decorated with benzothiadiazole and triazine groups as dual O2 reduction active centers,boosting photocatalytic H_(2)O_(2) production.The optimal ZC-10 hybrid delivers a maximum H2O2 generation rate of 12000μmol g^(–1) h^(–1),10.3 and 164 times higher than those of zinc oxide nanorods and CTFs,respectively.Moreover,the charge transfer mechanism in the S-scheme heterojunction is well investigated with in situ spectroscopic measurements and theoretical calculations.展开更多
基金Supported by National High Level Hospital Clinical Research Funding(Youth Clinical Research Project of Peking University First Hospital),No.2023YC27Capital’s Funds for Health Improvement and Research,No.2022-2-40711National High Level Hospital Clinical Research Funding(Interdepartmental Research Project of Peking University First Hospital),No.2024IR20.
文摘BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
文摘Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.
文摘Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy (DAPT) has been indicated in this group, however, DAPT significantly increases the risk of bleeding. Objectives: This study aimed to evaluate aspirin versus clopidogrel and aspirin on major adverse cardiac and cerebrovascular events (MACCE) and risk of bleeding in individuals already on DAPT for one year after undergoing PCI. Methods: This was a single-center, double-arm, interventional, prospective study. A total of 956 individuals who had undergone PCI and were on DAPT for a year were enrolled. After calculating DAPT scores, individuals with DAPT scores ≥2 were assigned to the aspirin and clopidogrel group, and those with DAPT scores Results: The group on clopidogrel and aspirin demonstrated a significantly lower rate of MACCE when compared to those on aspirin alone (p = 0.003). However, stent thrombosis, stroke, and myocardial infarction (MI) did not significantly differ in an inter-group comparison. The rate of moderate bleeding was greater in the clopidogrel group;however, the difference was not found to be statistically significant (p = 0.19). Conclusions: Continuing DAPT for a period between 12 and 24 months after PCI in individuals with a DAPT score ≥2 had favorable outcomes in reducing coronary adverse events without resulting in significant bleeding.
基金2022 National Social Science Foundation Major Project:Research on the Path of High-quality Development of Natural Gas Industry Driven by Energy Revolution:Research on the Policy Guarantee System for High-quality Development of Natural Gas Industry of Sub-theme V(22&ZD105)2024 Chengdu Soft Science Research Project:Research on the Innovation Mechanism and Risk Prevention and Control of Chengdu's New Energy Industry under the Dual-Carbon Goal(2023-RK00-00174-ZF)2024 Sichuan Petroleum and Natural Gas Development Research Center.Annual Urban Gas Special Project:Mode Construction of High-Quality Transformation and Development of Gas Enterprises(2024SY024)。
文摘The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)+8 种基金Shenyang Science and Technology Project(21-108-9-04)Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)the Research Fund for the Doctoral Program of Liaoning Province(2022-BS-114)Chunhui Program of the Ministry of Education of the People’s Republic of China(202201135)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemes,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021).
文摘The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.
文摘This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
文摘BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to complications such as Bar-rett’s esophagus and esophagitis.Conventional proton pump inhibitors(PPIs)often fail to reduce nocturnal acid production,leaving patients with unresolved symptoms that worsen at night and decreased satisfaction.Happi ER,a novel dual delayed-release(DDR)formulation of rabeprazole,aims to address these limitations by providing both immediate and prolonged acid suppression.AIM To evaluate the safety and effectiveness of rabeprazole DDR 20 mg capsule in patients with GERD.METHODS This study involved a multicenter,real-world,prospective,observational design over an eight-week period.A total of 1022 GERD patients were treated with rabeprazole DDR 20 mg capsules(Happi ER),as prescribed by their physicians.We included adult patients with confirmed GERD and persistent heartburn symptoms despite prior PPI use.Outcome measures included heartburn severity,frequency of night-time awakenings,use of rescue medications,and overall patient satisfaction.RESULTS Rabeprazole DDR 20 mg capsules(Happi ER)were shown to be highly effective in treating GERD symptoms.At the end of the study,the mean heartburn score improved significantly from 2.46±0.67 at baseline to 0.16±0.39(P<0.0001).The median number of night-time awakenings decreased to 0(P<0.0001).More than 93%of patients rated the therapy as“excellent”or“very good”,reflecting high satisfaction.No significant adverse effects were reported,and the safety profile was comparable to that of traditional PPIs.CONCLUSION By providing both rapid and sustained acid suppression,Happi ER effectively treats GERD,particularly with respect to night-time symptoms.Its safety and efficacy profile make it a viable option for individuals with mild-to-moderate GERD,significantly improving the quality of life and symptom management.
基金Supported by the National Natural Science Foundation of China,No.82270594the National Natural Science Foundation for Youths of China,No.82103151+1 种基金the Outstanding Youth Foundation of Hunan Province,No.2022JJ20092the Wisdom Accumulation and Talent Cultivation Project of Third Xiangya Hospital of Central South University,No.YX202103.
文摘BACKGROUND Effective acid suppression significantly enhances the eradication rate of Helicobacter pylori(H.pylori).AIM To assess the efficacy and safety of high-dose dual therapy(HDDT)utilizing various highly potent antisecretory medications,thereby providing additional clinical guidance for H.pylori eradication.METHODS The study population comprised untreated H.pylori patients from three medical centers in central China.From February 10,2024 to March 31,2024,439 subjects were randomly allocated to either the esomeprazole-amoxicillin(EA)or esomeprazole-amoxicillin-clarithromycin-bismuth(B-quadruple)group.Subsequently,from April 1,2024 to May 10,2024,367 subjects were randomly assigned to either the vonoprazan-amoxicillin(VA)or vonoprazan-amoxicillin-clarithromycin(VAC)group.The study recorded treatment efficacy,adverse events,compliance,symptom alleviation,and associated costs.RESULTS EA-dual demonstrated non-inferiority to B-quadruple regimen in modified intention-to-treat(mITT)and perprotocol(PP)analyses(P<0.025).However,the eradication rate of EA was lower than that of the B-quadruple group[70.59%vs 83.49%,92.86%vs 98.38%,93.94%vs 98.38%,intention-to-treat(ITT),mITT,PP respectively,P<0.05].In ITT,mITT,and PP analyses,VA-dual was non-inferior to VAC treatment(84.15%vs 83.15%,96.25%vs 92.73%,96.75%vs 93.75%,P<0.025).No significant differences were observed in adverse events,compliance,and symptom relief between groups.VA exhibited the lowest cost.Antibiotic use within 2 years,poor compliance,and suburban residence were associated with reduced eradication efficacy(P<0.05).CONCLUSION The HDDT based on vonoprazan demonstrated non-inferiority to the VAC triple regimen,suggesting its potential as a recommended first-line treatment for H.pylori eradication.While B-quadruple therapy showed better eradication rate than EA therapy,the latter proved non-inferior in mITT and PP analyses.Notably,antibiotic use within the preceding two years,adherence to treatment protocols,and patient residence emerged as critical factors influencing eradication success.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
基金supported by the National Natural Science Foundation of China under Grant Nos.62461037,62076117 and 62166026the Jiangxi Provincial Natural Science Foundation under Grant Nos.20224BAB212011,20232BAB202051,20232BAB212008 and 20242BAB25078the Jiangxi Provincial Key Laboratory of Virtual Reality under Grant No.2024SSY03151.
文摘The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets.
文摘One-step direct production of methanol from methane and water(PMMW)under mild conditions is challenging in heterogeneous catalysis owing to the absence of highly effective catalysts.Herein,we designed a series of“Single-Atom”-“Frustrated Lewis Pair”(SA-FLP)dual active sites for the direct PMMW via density functional theory(DFT)calculations combined with a machine learning(ML)approach.The results indicate that the nine designed SA-FLP catalysts are capable of efficiently activate CH4 and H_(2)O and facilitate the coupling of OH^(*)and CH_(3)^(*)into methanol.The DFT-based microkinetic simulation(MKM)results indicate that CH_(3)OH production on Co1-FLP and Pt1-FLP catalysts can reach the turnover frequencies(TOFs)of 1.01×10^(−3)s^(-1)and 8.80×10^(−4)s^(-1),respectively,which exceed the experimentally reported values by three orders of magnitude.ML results unveil that the gradient boosted regression model with 13 simple features could give satisfactory predictions for the TOFs of CH_(3)OH production with RMSE and R^(2)of 0.009 s^(-1)and 1.00,respectively.The ML-predicted MKM results indicate that four catalysts including V_(1-),Fe_(1-),Ti_(1-),and Mn_(1)-FLP exhibit higher TOFs of CH_(3)OH production than the value that the most relevant experiments reported,indicating that the four catalysts are also promising catalysts for the PMMW.This study not only develops a simple and efficient approach for design and screening SA-FLP catalysts but also provides mechanistic insights into the direct PMMW.
文摘In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The proof is adapted from Guan-Li[17]and Chen-Tu-Wu-Xiang[11].
基金supported by the National Natural Science Foundation of China(22078132,22108103,and U22A20413)the Open Funding Project of the National Key Labora-tory of Biochemical Engineering(2021KF-02)+3 种基金China Postdoctoral Science Foundation(2021M691301)Jiangsu Key Research and Development Program(BE2022356)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(GZ20230989)Jiangsu Agricultural Independent Innovation Fund Project(CX(21)3079).
文摘Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers(MIPs).To implement this synergistic strategy,bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications(PIMs)onto mesoporous silica nanosheets.The prepared sorbents(denoted as‘‘D-PMIPs”)were utilized to improve the specific identification of adenosine 5-monophosphate(AMP).Significantly,the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m^(2)·g^(-1),which facilitates the formation of abundant specific recognition sites in the D-PMIPs.The dual covalent receptors are valuable for estab-lishing the spatial orientation and arrangement of AMP through multiple cooperative interactions.PIMs enable precise site-specific functionalization within the imprinted cavities,leading to the tailor-made formation of complementary binding sites.The maximum number of high-affinity binding sites(Nmax)of the D-PMIPs is 39.99 lmol·g^(-1),which is significantly higher than that of imprinted sorbents with a sin-gle receptor(i.e.,S-BMIPs or S-PMIPs).The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model,indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base.This study suggests that using dual cova-lent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity,allow-ing for the controlled engineering of imprinted sites.
基金National Natural Science Foundation of China(U22B20149,22308376)Outstanding Young Scholars Foundation of China University of Petroleum(Beijing)(2462023BJRC015)Foundation of United Institute for Carbon Neutrality(CNIF20230209)。
文摘Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.
文摘Emerging as lamellar materials,covalent triazine frameworks(CTFs)exhibited great potential for photocatalysis,but their photocatalytic performance is always hindered by the prone recombination of photogenerated carriers.To overcome this obstacle,a 1D/2D step-scheme(S-scheme)heterojunction is constructed for photocatalytic synthesis of H_(2)O_(2).The S-scheme heterojunction fabricated with CTF and ZnO effectively enhances light absorption,redox capabilities,and charge carrier separation and transfer.In particular,the CTF is decorated with benzothiadiazole and triazine groups as dual O2 reduction active centers,boosting photocatalytic H_(2)O_(2) production.The optimal ZC-10 hybrid delivers a maximum H2O2 generation rate of 12000μmol g^(–1) h^(–1),10.3 and 164 times higher than those of zinc oxide nanorods and CTFs,respectively.Moreover,the charge transfer mechanism in the S-scheme heterojunction is well investigated with in situ spectroscopic measurements and theoretical calculations.