The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The resul...The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho...To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.展开更多
An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the ...An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.展开更多
An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The...An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
According to the specific situation of a general hospital project, this paper analyzes the feasibility of the application of ground source heat pump air conditioning in the project from the conditions, one-time invest...According to the specific situation of a general hospital project, this paper analyzes the feasibility of the application of ground source heat pump air conditioning in the project from the conditions, one-time investment, energy consumption and operating costs of the implementation of ground source heat pump air conditioning, and comprehensively expounds several important technical measures of the implementation of ground source heat pump air conditioning. Combined with the characteristics of this project, the operation strategies of ground source heat pump air conditioning system under summer cooling condition, winter heating condition and over season condition are designed and put forward to ensure that the ground source heat pump air conditioning system can achieve the expected design effect and energy saving and emission reduction benefits.展开更多
Due to the advantages of mature technology, economy, energy saving, emission reduction and good practical effect, air source heat pump is widely used in rural clean heating projects in northern China. The standardizat...Due to the advantages of mature technology, economy, energy saving, emission reduction and good practical effect, air source heat pump is widely used in rural clean heating projects in northern China. The standardization of air heater of air source heat pump is its industrial technology. One of the basic core elements plays an important role in promoting the progress of heat pump technology in China.展开更多
This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system....This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.展开更多
A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of...A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.展开更多
The studies on predicting the energy consumption of air conditioning systems are meaningful to building energy conservation and management. Generally, the more comprehensive the building information is, the easier the...The studies on predicting the energy consumption of air conditioning systems are meaningful to building energy conservation and management. Generally, the more comprehensive the building information is, the easier the prediction model can be developed. However, it is very difficult to get detailed information about existing/old buildings (information-poor buildings), it is a big challenge to predict the energy consumption accurately by limited information. This study aims to predict the electricity consumption of the water source heat pump system of an office building based on meteorological data. The key variables are selected by error analysis and sensitivity analysis, and the effects of each variable on the models’ prediction performance can be obtained. Besides, the prediction models are established by support vector regression algorithm and trained by the local meteorological data. The results show that the positive and negative variables can be identified, and these positive variables are responsible for more than 70% of the total importance. Moreover, the root mean square error falls to 4.6044 from 7.8227 and the relative square error falls to 0.1494 from 0.4313 when the negative inputs are removed. And the errors reduce further to 4.1160 and 0.1194 by parameter optimization.展开更多
A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the amb...A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.展开更多
基金Supported by Scientific Research Fund of Ningxia University [(E) ndzr09-23]
文摘The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金Project(50606007) supported by the National Natural Science Foundation of China
文摘To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.
基金Supported bythe"11th Five-Year Plan"for National Plans of Major Technology Projects
文摘An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601602)National Natural Science Foundation of China(No.51676199)
文摘An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
文摘According to the specific situation of a general hospital project, this paper analyzes the feasibility of the application of ground source heat pump air conditioning in the project from the conditions, one-time investment, energy consumption and operating costs of the implementation of ground source heat pump air conditioning, and comprehensively expounds several important technical measures of the implementation of ground source heat pump air conditioning. Combined with the characteristics of this project, the operation strategies of ground source heat pump air conditioning system under summer cooling condition, winter heating condition and over season condition are designed and put forward to ensure that the ground source heat pump air conditioning system can achieve the expected design effect and energy saving and emission reduction benefits.
文摘Due to the advantages of mature technology, economy, energy saving, emission reduction and good practical effect, air source heat pump is widely used in rural clean heating projects in northern China. The standardization of air heater of air source heat pump is its industrial technology. One of the basic core elements plays an important role in promoting the progress of heat pump technology in China.
基金Supported by Hubei Provincial Natural Science Foundation(2008CDB363)
文摘This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.
基金the National Natural Science Foundation of China(No.51776117)。
文摘A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.
基金This work was supported by the National Natural Science Foundation of China(No.51876070,No.51576074).
文摘The studies on predicting the energy consumption of air conditioning systems are meaningful to building energy conservation and management. Generally, the more comprehensive the building information is, the easier the prediction model can be developed. However, it is very difficult to get detailed information about existing/old buildings (information-poor buildings), it is a big challenge to predict the energy consumption accurately by limited information. This study aims to predict the electricity consumption of the water source heat pump system of an office building based on meteorological data. The key variables are selected by error analysis and sensitivity analysis, and the effects of each variable on the models’ prediction performance can be obtained. Besides, the prediction models are established by support vector regression algorithm and trained by the local meteorological data. The results show that the positive and negative variables can be identified, and these positive variables are responsible for more than 70% of the total importance. Moreover, the root mean square error falls to 4.6044 from 7.8227 and the relative square error falls to 0.1494 from 0.4313 when the negative inputs are removed. And the errors reduce further to 4.1160 and 0.1194 by parameter optimization.
基金This work is funded by the UK BEIS project‘A low carbon heating system for existing public buildings employing a highly innovative multiple-throughout-flowing micro-channel solar-panel-array and a novel mixed indoor/outdoor air source heat pump’(LCHTIF1010).
文摘A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.