期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Clustering feature decision trees for semi-supervised classification from high-speed data streams 被引量:4
1
作者 Wen-hua XU Zheng QIN Yang CHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期615-628,共14页
Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this pa... Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this paper,we build a clustering feature decision tree model,CFDT,from data streams having both unlabeled and a small number of labeled examples.CFDT applies a micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision tree induction.Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time property.Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-ating high classification accuracy with high speed. 展开更多
关键词 clustering feature vector Decision tree Semi-supervised learning Stream data classification Very fast decision tree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部