期刊文献+
共找到52,950篇文章
< 1 2 250 >
每页显示 20 50 100
The Finite Element Analysis of Optimal Orthodontic Force for Canine Distalization with Long-Arm Brackets
1
作者 Zhidan Zhu Xiaojing Sun +4 位作者 Bin Lu Qijie Shi Yun Tang Siyu Zou Qian Jiang 《Journal of Biosciences and Medicines》 2025年第1期196-205,共10页
Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this devic... Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range. 展开更多
关键词 Orthodontic Force Tooth Movement finite Element analysis Periodontal Ligament Stress
在线阅读 下载PDF
In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation
2
作者 Omer Ekim Genel Hilal Koc Ekrem Tufekci 《Computers, Materials & Continua》 2025年第2期2043-2059,共17页
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano... Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams. 展开更多
关键词 Nonlocal elasticity finite element exact solution static analysis nanobeam curved
在线阅读 下载PDF
Integrating finite element analysis in total hip arthroplasty for childhood hip disorders:Enhancing precision and outcomes
3
作者 Muhammad Imam Ammarullah 《World Journal of Orthopedics》 2025年第1期1-11,共11页
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes... Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae. 展开更多
关键词 finite element analysis Total hip arthroplasty Childhood hip disorders IMPLANT BIOMECHANICAL
在线阅读 下载PDF
Finite element analysis and experimental study on the sealing performance of low-phenyl silicone rubber sealing rings
4
作者 Ming Gao Dongkai Li +6 位作者 Kun Liu Shuliang Xu Feng Zhao Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第1期123-137,共15页
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an... Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China. 展开更多
关键词 Low-phenyl silicone rubber Sealing ring Sealing performance finite element analysis LEAKAGE
在线阅读 下载PDF
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method
5
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) Three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
Collapse Behavior of Pipe-Framed Greenhouses with and without Reinforcement under Snow Loading:A 3-D Finite Element Analysis
6
作者 Yasushi Uematsu Kazuya Takahashi 《Journal of Civil Engineering and Architecture》 2024年第2期51-59,共9页
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ... The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern. 展开更多
关键词 Pipe-framed greenhouse snow loading COLLAPSE BUCKLING finite element analysis
在线阅读 下载PDF
Finite Element Analysis of Coronal Shear Fractures of the Femoral Neck: Displacement of the Femoral Head and Effect of Osteosynthetic Implants
7
作者 Yukino Mori Hiroaki Kijima +2 位作者 Mei Terashi Takehiro Iwami Naohisa Miyakoshi 《World Journal of Engineering and Technology》 2024年第3期651-664,共14页
Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynt... Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF. 展开更多
关键词 finite Element analysis Proximal Femur Fractures Intramedullary Fixation Coronal Shear Fractures Femoral Neck
在线阅读 下载PDF
Finite element analysis of stress at implant-bone interface of dental implants with different structures 被引量:3
8
作者 陈良建 何浩 +3 位作者 李益民 李挺 郭小平 汪瑞芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1602-1610,共9页
The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element model... The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones. 展开更多
关键词 titanium implant elastic modulus finite element analysis porous structure
在线阅读 下载PDF
Finite element failure analysis of continuous prestressed concrete box girders 被引量:4
9
作者 张峰 李术才 +2 位作者 李树忱 叶见曙 雷笑 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期236-240,共5页
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a... In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity. 展开更多
关键词 full-scale failure test prestressed concrete box girder finite element analysis combined element prestressed tendon load carrying capacity
在线阅读 下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
10
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
在线阅读 下载PDF
Finite element analysis of the Taizhou Water Station Site 被引量:2
11
作者 潘建伍 淳庆 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期289-293,共5页
The Taizhou Water Station Site is an ancient masonry structure ruin built in the Southern Song Dynasty. The main structure was severely damaged. In order to understand its current structural properties and provide a s... The Taizhou Water Station Site is an ancient masonry structure ruin built in the Southern Song Dynasty. The main structure was severely damaged. In order to understand its current structural properties and provide a scientific basis for protection design nonlinear finite element analysis and parameter analysis are carried out.The crack patterns deformations and stresses of the main structure under four load cases are analyzed by nonlinear finite element analysis and the effect of the backfill bulk density and modulus on the maximum principal tensile stress and maximum compressive stress are studied by parameter analysis.The results show that the most unfavorable condition for the foundation is the combination of weight+backfill soil pressure+additional load the most unfavorable load case to the main structure is weight +backfill soil pressure +water pressure+additional heap load the maximum principal tensile stress of the main structure is very sensitive to the changes in the bulk density of the backfill soil. 展开更多
关键词 finite element analysis Taizhou Water StationSite ancient masonry structure
在线阅读 下载PDF
Modeling Technology in Finite Element Analysis of Electrostatic Proximity Fuze Problem 被引量:2
12
作者 李银林 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期286-290,共5页
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a... In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly. 展开更多
关键词 electrostatic proximity fuze finite element analysis boundary condition scale reduction method
在线阅读 下载PDF
Analysis of Si/GaAs Bonding Stresses with the Finite Element Method
13
作者 何国荣 杨国华 +5 位作者 郑婉华 吴旭明 王小东 曹玉莲 王青 陈良惠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第11期1906-1910,共5页
In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stres... In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress, and peeling stress, taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure. 展开更多
关键词 BONDING thermal stress finite element analysis
在线阅读 下载PDF
Fatigue Strength Analysis of Dissimilar Aluminum Alloy TIG Welds
14
作者 LIAO Xiangyun WANG Ruijie +1 位作者 LIU Guoshou ZHAO Pinglin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期265-274,共10页
The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental result... The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress. 展开更多
关键词 TIG welding notch stress method equivalent structural stress method fatigue life finite element analysis
在线阅读 下载PDF
Seismic performance of double-skin steel-concrete composite box piers: Part Ⅱ—Nonlinear finite element analysis
15
作者 夏坚 宗周红 +1 位作者 徐焯然 李明鸿 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期346-355,共10页
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;... An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers. 展开更多
关键词 double-skin steel-concrete composite box(DSCB) pier finite element analysis local buckling hysteretic behavior skeleton curve model
在线阅读 下载PDF
Computer model of the human head-neck and finite element analysis 被引量:3
16
作者 薛强 卢晓艳 《微计算机信息》 北大核心 2008年第6期262-264,共3页
The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically... The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically modeling of Mimics software and the RE technology of Geomagic software. Then the finite element model of the head-neck which is close to the real one is set up by the preprocessor of the FEM soft ware ANSYS. After the transient finite element analysis is performed on the model,the historical response of the displacement of the head is obtained. The result is validated by the result of the existed experiment. The stress,as well as the deformation,of nodes in the head and the cervical spine at any time benefits a lot to the clinic study on the injure to the head and neck caused by the impacts. And all the analysis is done by limited computer available. 展开更多
关键词 头颈椎 计算机模型 生物力学 有限元分析
在线阅读 下载PDF
STIFFNESS ANALYSIS OF THE MAIN MODULE FOR PARALLEL MACHINE TOOLS BY FINITE ELEMENT ANALYSIS 被引量:2
17
作者 周立华 王玉茹 +1 位作者 黄田 Modler K H 《Transactions of Tianjin University》 EI CAS 2001年第1期30-35,共6页
With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that... With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools. 展开更多
关键词 parallel machine tool main module STIFFNESS finite element analysis
全文增补中
The Finite Volume Element Method for Time-Fractional Nonlinear Fourth-Order Diffusion Equation with Time Delay
18
作者 Anran Li Qing Yang 《Engineering(科研)》 2025年第1期53-72,共20页
In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order sp... In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments. 展开更多
关键词 Time-Fractional Nonlinear Fourth-Order Diffusion Equation with Time Delay finite Volume Element Method Caputo-Fractional Derivative Optimal Priori Error analysis
在线阅读 下载PDF
Hazard Analysis of Dam Corridor Cracks Based on Field Detection and Numerical Calculation
19
作者 Jiacheng Li Liangkun Gong +3 位作者 Yuxiang Li Jialiang Qian Weiyu Wu Weiran Lu 《Journal of World Architecture》 2025年第1期32-39,共8页
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three... The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region. 展开更多
关键词 Gallery cracks Field test finite element calculation Hazard analysis
在线阅读 下载PDF
Model tests and numerical analysis of emergency treatment of cohesionless soil landslide with quick-setting polyurethane
20
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 HUANG Rufa CAI Zhenjie GAO Anhua 《Journal of Mountain Science》 2025年第1期110-121,共12页
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the... Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live. 展开更多
关键词 Cohesionless soil landslide POLYURETHANE Emergency treatment Reinforcement effect Model test finite element analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部