期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
1
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural network Random Vector functional-link (RVFL) network Alternating Direction Method of Multipliers (ADMM)
在线阅读 下载PDF
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
2
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
在线阅读 下载PDF
Adaptive functional link network control of near-space vehicles with dynamical uncertainties 被引量:5
3
作者 Yanli Du Qingxian Wu Changsheng Jiang Jie Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期868-876,共9页
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ... The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness. 展开更多
关键词 adaptive control system dynamical uncertainties partially feedback functional link network near-space vehicle.
在线阅读 下载PDF
Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays 被引量:4
4
作者 Chengyu Xie Hoang Nguyen +1 位作者 Yosoon Choi Danial Jahed Armaghani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期34-51,共18页
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures... Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy. 展开更多
关键词 Diaphragm wall deflection Braced excavation Finite element analysis Clays Meta-heuristic algorithms functional linked neural network
在线阅读 下载PDF
Functional Link Neural Network for Predicting Crystallization Temperature of Ammonium Chloride in Air Cooler System 被引量:3
5
作者 Jin Haozhe Gu Yong +3 位作者 Ren Jia Wu Xiangyao Quan Jianxun Xu Linfengyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第2期86-92,共7页
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper... The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models. 展开更多
关键词 air cooler NH4Cl salt crystallization temperature DATA-DRIVEN functional link neural network particle swarm optimization
在线阅读 下载PDF
Mathematical Model and Algorithm for Link Community Detection in Bipartite Networks 被引量:1
6
作者 Zhenping Li Shihua Zhang Xiangsun Zhang 《American Journal of Operations Research》 2015年第5期421-434,共14页
In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a no... In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to identifying node communities in both unipartite and bipartite networks, some researchers have investigated the link community detection problem in unipartite networks. But current research pays little attention to the link community detection problem in bipartite networks. In this paper, we investigate the link community detection problem in bipartite networks, and formulate it into an integer programming model. We proposed a genetic algorithm for partition the bipartite network into overlapping link communities. Simulations are done on both artificial networks and real-world networks. The results show that the bipartite network can be efficiently partitioned into overlapping link communities by the genetic algorithm. 展开更多
关键词 BIPARTITE network link Community Quantity function INTEGER PROGRAMMING GENETIC Algorithm
在线阅读 下载PDF
基于混合集成学习的电网安全评估模型研究
7
作者 常英贤 郭阳 +1 位作者 王越越 邵志敏 《自动化仪表》 2025年第3期43-48,共6页
针对电力系统安全评估时存在原始相量测量装置(PMU)数据缺失导致评估效果差的问题,提出了一种基于混合集成学习的电网安全评估模型。设计了基于生成对抗网络(GAN)的电力数据增强模型,从而实现在不依赖PMU可观测性和网络拓扑的情况下,直... 针对电力系统安全评估时存在原始相量测量装置(PMU)数据缺失导致评估效果差的问题,提出了一种基于混合集成学习的电网安全评估模型。设计了基于生成对抗网络(GAN)的电力数据增强模型,从而实现在不依赖PMU可观测性和网络拓扑的情况下,直接准确填充缺失数据。建立了结合极限学习机(ELM)和随机向量函数链接(RVFL)的混合电力特征集成学习网络,以实现更优的学习性能,从而提高评估精度。在试验阶段,应用GAN数据增强后,与ELM、RVFL、支持向量机(SVM)、递归神经网络(RNN)、长短时记忆(LSTM)等模型相比,所提模型性能最优。所提模型的训练集平均绝对百分比误差(MAPE)约为0.0285,测试集MAPE约为0.0389。所提模型为电力系统安全评估、管理及稳定运行提供了借鉴。 展开更多
关键词 电力系统 安全评估 深度学习 数据增强 极限学习机 随机向量函数链接网络
在线阅读 下载PDF
Numeral eddy current sensor modelling based on genetic neural network 被引量:1
8
作者 俞阿龙 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期878-882,共5页
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced... This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method. 展开更多
关键词 MODELLING numeral eddy current sensor functional link neural network genetic neural network
在线阅读 下载PDF
A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
9
作者 Along Yu Zheng Li 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期611-613,共3页
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.... In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS). 展开更多
关键词 MODELING eddy current sensor functional link neural network genetic algorithm genetic neural network
在线阅读 下载PDF
安全网络CC-Link Safety浅谈
10
作者 吴勤 覃强 《仪器仪表标准化与计量》 2007年第1期13-14,共2页
介绍CC-Link Safety的技术背景和技术特点,该技术是安全网络的代表之一,其设计的基础是开放式现场总线CC-Link,兼顾了网络安全性和系统构造的经济性,对我国的安全性系统构造有着重要的借鉴意义。
关键词 CC—link Salety 安全网络 RAS功能
在线阅读 下载PDF
阿尔茨海默病的多层脑网络链路预测重构
11
作者 曹春萍 俞璎时 《小型微型计算机系统》 CSCD 北大核心 2024年第2期483-489,共7页
功能脑网络的构建工作是阿尔茨海默病辅助诊断中的基础任务.针对基于全频域的单层网络构建方法难以处理小频段间的异质性特征以及脑网络中可能存在错误边或缺失边的问题,提出一种基于多层网络链路预测的功能脑网络模型.利用多层网络框... 功能脑网络的构建工作是阿尔茨海默病辅助诊断中的基础任务.针对基于全频域的单层网络构建方法难以处理小频段间的异质性特征以及脑网络中可能存在错误边或缺失边的问题,提出一种基于多层网络链路预测的功能脑网络模型.利用多层网络框架使节点间存在多个频段描述下的连接关系,并设计融合层间相似性和节点重要性的局部相似性指标,进而基于多层网络拓扑结构进行链路预测,以重构网络结构.实验结果表明,与当前先进的脑网络模型相比,该模型在阿尔茨海默病分类诊断中性能表现更好,证明所提模型能有效提升网络表达的精准性,且在计算机辅助诊断中具有良好的应用价值. 展开更多
关键词 多层网络 链路预测 层间相似性 节点重要性 功能脑网络
在线阅读 下载PDF
奇异值分解下在线鲁棒正则化随机网络
12
作者 于洋 邓瑞 +1 位作者 余刚 庞新富 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期407-415,共9页
在线鲁棒随机权神经网络(OR-RVFLN)具有较好的逼近性、较快的收敛速度、较高的鲁棒性能以及较小的存储空间.但是,OR-RVFLN算法计算过程中会产生矩阵的不适定问题,使得隐含层输出矩阵的精度较低.针对这个问题,本文提出了奇异值分解下在... 在线鲁棒随机权神经网络(OR-RVFLN)具有较好的逼近性、较快的收敛速度、较高的鲁棒性能以及较小的存储空间.但是,OR-RVFLN算法计算过程中会产生矩阵的不适定问题,使得隐含层输出矩阵的精度较低.针对这个问题,本文提出了奇异值分解下在线鲁棒正则化随机网络(SVD-OR-RRVFLN).该算法在OR-RVFLN算法的基础上,将正则化项引入到权值的估计中,并且对隐含层输出矩阵进行奇异值分解;同时采用核密度估计(KDE)法,对整个SVD-OR-RRVFLN网络的权值矩阵进行更新,并分析了所提算法的必要性和收敛性.最后,将所提的方法应用于Benchmark数据集和磨矿粒度的指标预测中,实验结果证实了该算法不仅可以有效地提高模型的预测精度和鲁棒性能,而且具有更快的训练速度. 展开更多
关键词 随机权神经网络 正则化 奇异值分解 磨矿过程 磨矿粒度
在线阅读 下载PDF
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
13
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
基于稀疏表示剪枝集成建模的烧结终点位置智能预测
14
作者 周平 吴忠卫 +1 位作者 张瑞垚 吴永建 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第3期436-446,共11页
烧结终点位置(BTP)是烧结过程至关重要的参数,直接决定着最终烧结矿的质量.由于BTP难以直接在线检测,因此,通过智能学习建模来实现BTP的在线预测并在此基础上进行操作参数调节对提高烧结矿质量具有重要意义.针对这一实际工程问题,首先... 烧结终点位置(BTP)是烧结过程至关重要的参数,直接决定着最终烧结矿的质量.由于BTP难以直接在线检测,因此,通过智能学习建模来实现BTP的在线预测并在此基础上进行操作参数调节对提高烧结矿质量具有重要意义.针对这一实际工程问题,首先提出一种基于遗传优化的Wrapper特征选择方法,可选取使后续预测建模性能最优的特征组合;在此基础上,为了解决单一学习器容易过拟合的问题,提出了基于随机权神经网络(RVFLNs)的稀疏表示剪枝(SRP)集成建模算法,即SRP-ERVFLNs算法.所提算法采用建模速度快、泛化性能好的RVFLNs作为个体基学习器,采用对基学习器基函数与隐层节点数等参数进行扰动的方式来增加集成学习子模型间的差异性;同时,为了进一步提高集成模型的泛化性能与计算效率,引入稀疏表示剪枝算法,实现对集成模型的高效剪枝;最后,将所提算法用于烧结过程BTP的预测建模.工业数据实验表明,所提方法相比于其他方法具有更好的预测精度、泛化性能和计算效率. 展开更多
关键词 智能预测 特征选择 集成学习 稀疏表示 剪枝 烧结终点位置 随机权神经网络(RVFLNs)
在线阅读 下载PDF
特征扩展的随机向量函数链神经网络
15
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数链神经网络(RVFLNN) Sigmoid激活函数 可解释
在线阅读 下载PDF
优化非等间距DNGM(1,1)模型
16
作者 单明星 翟艳丽 《河南财政金融学院学报(自然科学版)》 2024年第4期7-13,共7页
针对小样本振荡序列预测问题,提出一种新型的优化非等间距DNGM(1,1)模型。首先,将原始振荡数据分界并直接建立非等间距DNGM(1,1)模型,通过对上下界非等间距DNGM(1,1)模型加权得到振荡点预测模型;然后通过函数链接网对点预测模型进行残... 针对小样本振荡序列预测问题,提出一种新型的优化非等间距DNGM(1,1)模型。首先,将原始振荡数据分界并直接建立非等间距DNGM(1,1)模型,通过对上下界非等间距DNGM(1,1)模型加权得到振荡点预测模型;然后通过函数链接网对点预测模型进行残差修正,并基于误差最小利用智能优化算法中的实值遗传算法求解模型参数,构建优化非等间距DNGM(1,1)模型;最后将其应用于实例中,说明了模型的有效性以及实用性。 展开更多
关键词 预测模型 非等间距DNGM(1 1) 函数链接网 残差修正 地下水
在线阅读 下载PDF
Multilayer perceptron and Chebyshev polynomials-based functional link artificial neural network for solving differential equations
17
作者 Shagun Panghal Manoj Kumar 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第2期104-119,共16页
This paper discusses the issues of computational efforts and the accuracy of solutions of differential equations using multilayer perceptron and Chebyshev polynomials-based functional link artificial neural networks.S... This paper discusses the issues of computational efforts and the accuracy of solutions of differential equations using multilayer perceptron and Chebyshev polynomials-based functional link artificial neural networks.Some ordinary and partial differential equations have been solved by both these techniques and pros and cons of both these type of feedforward networks have been discussed in detail.Apart from that,various factors that affect the accuracy of the solution have also been analyzed. 展开更多
关键词 Multilayer perceptron optimization functional link neural network trial solution Chebyshev polynomials
原文传递
虚拟电厂入网链路与功能组织
18
作者 宋天琦 刘惠萍 《电力与能源》 2024年第5期539-543,共5页
为充分利用虚拟电厂技术在编排规模化灵活资源方面的能力,有效提升配电网内分散资源的聚合调配效率,结合我国电网的配电网数字化转型成果与物联网发展趋势,基于具有更强融合互动性和分层可拓性的“云管边端”架构体系,以边缘智能终端作... 为充分利用虚拟电厂技术在编排规模化灵活资源方面的能力,有效提升配电网内分散资源的聚合调配效率,结合我国电网的配电网数字化转型成果与物联网发展趋势,基于具有更强融合互动性和分层可拓性的“云管边端”架构体系,以边缘智能终端作为边缘节点的关键组成部分,分析了虚拟电厂入网链路的局部及整体架构。同时,侧重边缘智能终端路径,从虚拟电厂动态响应特性评估及评估结果利用的角度出发,研究了虚拟电厂接入电力系统的功能组织。研究结果可为今后虚拟电厂充分发挥多元化资源整合潜力,助力我国新型电力系统实现经济可靠、节能降碳的目标奠定基础。 展开更多
关键词 虚拟电厂 云管边端 入网链路 功能组织
在线阅读 下载PDF
电力系统模糊无功优化的建模及算法 被引量:32
19
作者 宋军英 刘涤尘 陈允平 《电网技术》 EI CSCD 北大核心 2001年第3期22-25,共4页
考虑了电力系统不确定性及模糊因素的存在 ,建立了含多个等式与不等式约束的多目标模糊无功优化模型 ,使用函数联接网络 (FL N)确定及细调隶属函数 ,并采用遗传算法搜索全局最优解。最后用 IEEE- 6节点系统验证了该模型及算法的有效性。
关键词 电力系统 线性规划 模糊集 无功优化 建模 算法
在线阅读 下载PDF
神经网络与计算力矩复合的机器人运动轨迹跟踪控制 被引量:17
20
作者 贺红林 何文丛 +1 位作者 刘文光 封立耀 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期270-275,共6页
为了实现机器人精密运动控制,在其关节系统引入计算力矩法(CTC)与神经网络复合的控制器,旨在通过CTC实现系统的初步控制并利用神经网络补偿机器人的不确定动力学特性所带来的运动误差。首先,建立了机器人的动力学模型并对其不确定性动... 为了实现机器人精密运动控制,在其关节系统引入计算力矩法(CTC)与神经网络复合的控制器,旨在通过CTC实现系统的初步控制并利用神经网络补偿机器人的不确定动力学特性所带来的运动误差。首先,建立了机器人的动力学模型并对其不确定性动力学量进行了描述;然后,为机器人构建了双闭环控制系统,并依据机器人标称模型规划出CTC控制律;进而,引入函数链神经网络(FLNN)对不确定性动力学量进行估值,并推导出FLNN的学习律;最后,对系统进行了仿真,结果显示,该复合控制器可将关节位置和速度跟踪误差控制在±0.001 rad和±0.001 rad/s之内,且其对机器人的参数变化及外部扰动具有较强的自适应性与鲁棒性。 展开更多
关键词 机器人 轨迹跟踪控制 函数链神经网络 计算力矩控制
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部