期刊文献+
共找到3,429篇文章
< 1 2 172 >
每页显示 20 50 100
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
1
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
一种改进的 Fuzzy c-means 聚类算法 被引量:4
2
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFcM
在线阅读 下载PDF
基于Fuzzy c-means算法聚类有效性函数的纹理分割 被引量:3
3
作者 宋相法 陈志国 +1 位作者 文成林 车金锐 《河南大学学报(自然科学版)》 CAS 2004年第1期14-17,共4页
Fuzzyc means(FCM)算法用于图像分割是一种非监督模糊聚类后再标定的过程.本文利用聚类有效性函数对Fuzzyc means算法的聚类结果进行评价,从而获得最优的聚类结果,较好地解决了Fuzzyc means算法的一些不足,如聚类数目无法自动确定、其... Fuzzyc means(FCM)算法用于图像分割是一种非监督模糊聚类后再标定的过程.本文利用聚类有效性函数对Fuzzyc means算法的聚类结果进行评价,从而获得最优的聚类结果,较好地解决了Fuzzyc means算法的一些不足,如聚类数目无法自动确定、其聚类结果是否最优.最后,利用纹理图像分割实验验证了该算法的有效性. 展开更多
关键词 FcM算法 聚类有效性函数 小波分解 纹理分割
在线阅读 下载PDF
Fuzzy C-Means算法中隶属度信息在特征空间的分布特性分析及改进方法 被引量:2
4
作者 胡世英 周源华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第1期67-72,共6页
首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明... 首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明这两种方法均起到了较好的效果. 展开更多
关键词 fuzzy 隶属度 选择注意性参数 置信度 FcM算法
在线阅读 下载PDF
基于空间加权距离的自适应Fuzzy C-Means算法研究 被引量:2
5
作者 王海起 朱锦 王劲峰 《测绘与空间地理信息》 2014年第2期18-21,24,共5页
空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时... 空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时的作用大小,并引入相似性指标,当两个聚类之间的相似度高于某个合并阈值时,则对应的一对聚类进行合并,从而克服需预先设置聚类类数的问题。通过应用实例的聚类有效性分析,与普通空间距离相比,基于空间加权距离的FCM算法具有稳定性和有效性。 展开更多
关键词 fuzzy e—means 空间加权距离 信息熵 自适应聚类合并
在线阅读 下载PDF
基于优化模糊C-means算法的不平衡大数据分类研究
6
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊c-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
在线阅读 下载PDF
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
7
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 cT soil IMAGES fuzzy c-means fuzzy clustering theory PORE IDENTIFIcATION rule
在线阅读 下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
8
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
Robust Dataset Classification Approach Based on Neighbor Searching and Kernel Fuzzy C-Means 被引量:7
9
作者 Li Liu Aolei Yang +3 位作者 Wenju Zhou Xiaofeng Zhang Minrui Fei Xiaowei Tu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第3期235-247,共13页
Dataset classification is an essential fundament of computational intelligence in cyber-physical systems (CPS). Due to the complexity of CPS dataset classification and the uncertainty of clustering number, this paper ... Dataset classification is an essential fundament of computational intelligence in cyber-physical systems (CPS). Due to the complexity of CPS dataset classification and the uncertainty of clustering number, this paper focuses on clarifying the dynamic behavior of acceleration dataset which is achieved from micro electro mechanical systems (MEMS) and complex image segmentation. To reduce the impact of parameters uncertainties with dataset classification, a novel robust dataset classification approach is proposed based on neighbor searching and kernel fuzzy c-means (NSKFCM) methods. Some optimized strategies, including neighbor searching, controlling clustering shape and adaptive distance kernel function, are employed to solve the issues of number of clusters, the stability and consistency of classification, respectively. Numerical experiments finally demonstrate the feasibility and robustness of the proposed method. © 2014 Chinese Association of Automation. 展开更多
关键词 Artificial intelligence Embedded systems fuzzy systems Image segmentation MEMS Numerical methods
在线阅读 下载PDF
A New Method of Wind Turbine Bearing Fault Diagnosis Based on Multi-Masking Empirical Mode Decomposition and Fuzzy C-Means Clustering 被引量:12
10
作者 Yongtao Hu Shuqing Zhang +3 位作者 Anqi Jiang Liguo Zhang Wanlu Jiang Junfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期156-167,共12页
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ... Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method. 展开更多
关键词 Wind TURBINE BEARING FAULTS diagnosis Multi-masking empirical mode decomposition (MMEMD) fuzzy c-mean (FcM) clustering
在线阅读 下载PDF
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
11
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 HARD c-means cLUSTERING ALGORITHM fuzzy c-means cLUSTERING ALGORITHM Suppressed fuzzy c-means cLUSTERING ALGORITHM Suppressed RATE
在线阅读 下载PDF
Fingerprint image segmentation using modified fuzzy c-means algorithm 被引量:1
12
作者 Jia-Yin Kang Cheng-Long Gong Wen-Juan Zhang 《Journal of Biomedical Science and Engineering》 2009年第8期656-660,共5页
Fingerprint segmentation is a crucial step in fingerprint recognition system, and determines the results of fingerprint analysis and recognition. This paper proposes an efficient approach for fingerprint segmentation ... Fingerprint segmentation is a crucial step in fingerprint recognition system, and determines the results of fingerprint analysis and recognition. This paper proposes an efficient approach for fingerprint segmentation based on modified fuzzy c-means (FCM). The proposed method is realized by modifying the objective function in the Szilagyi’s algorithm via introducing histogram-based weight. Experimental results show that the proposed approach has an efficient performance while segmenting both original fingerprint image and fingerprint images corrupted by different type of noises. 展开更多
关键词 FINGERPRINT SEGMENTATION fuzzy c-means HISTOGRAM ROBUSTNESS
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
13
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Improved evidential fuzzy c-means method 被引量:4
14
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FcM) magnetic resonance imaging(MRI) image segmentation
在线阅读 下载PDF
Process disturbances monitoring and recognition of short-circuiting GMAW by fuzzy c-means system
15
作者 胡庆贤 王顺尧 王艳辉 《China Welding》 EI CAS 2011年第4期28-33,共6页
An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statisticall... An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statistically test data of probability density distribution ( PDD ) and class frequency distribution ( CFD ) of welding electrical parameters are further processed into a 7-dimensional array which is designed to describe various welding conditions, and is employed as input vector of the intelligent fuzzy c-means system. The fuzzy c-means system is used to conduct process monitoring and automatic recognition. The correct recognition rate of 24 test data under 8 kinds of welding condition is 92%. 展开更多
关键词 process monitoring fuzzy c-means process disturbance short-circuiting gas metal arc welding
在线阅读 下载PDF
An Adaptive Fuzzy C-Means Algorithm for Improving MRI Segmentation
16
作者 Elnomery Allam Zanaty 《Open Journal of Medical Imaging》 2013年第4期125-135,共11页
In this paper, we propose new fuzzy c-means method for improving the magnetic resonance imaging (MRI) segmenta- tion. The proposed method called “possiblistic fuzzy c-means (PFCM)” which hybrids the fuzzy c-means (F... In this paper, we propose new fuzzy c-means method for improving the magnetic resonance imaging (MRI) segmenta- tion. The proposed method called “possiblistic fuzzy c-means (PFCM)” which hybrids the fuzzy c-means (FCM) and possiblistic c-means (PCM) functions. It is realized by modifying the objective function of the conventional PCM algorithm with Gaussian exponent weights to produce memberships and possibilities simultaneously, along with the usual point prototypes or cluster centers for each cluster. The membership values can be interpreted as degrees of possibility of the points belonging to the classes, i.e., the compatibilities of the points with the class prototypes. For that, the proposed algorithm is capable to avoid various problems of existing fuzzy clustering methods that solve the defect of noise sensitivity and overcomes the coincident clusters problem of PCM. The efficiency of the proposed algorithm is demonstrated by extensive segmentation experiments by applying them to the challenging applications: gray matter/white matter segmentation in magnetic resonance image (MRI) datasets and by comparison with other state of the art algorithms. The experimental results show that the proposed method produces accurate and stable results. 展开更多
关键词 fuzzy cLUSTERING Possiblistic c-means MEDIcAL Image SEGMENTATION
在线阅读 下载PDF
Automated Colorization of Grayscale Images Using Texture Descriptors and a Modified Fuzzy C-Means Clustering
17
作者 Christophe Gauge Sreela Sasi 《Journal of Intelligent Learning Systems and Applications》 2012年第2期135-143,共9页
A novel example-based process for Automated Colorization of grayscale images using Texture Descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of ... A novel example-based process for Automated Colorization of grayscale images using Texture Descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of homogeneous textures are extracted. A multi-channel filtering technique is used for texture-based image segmentation, combined with a modified Fuzzy C-means (FCM) clustering algorithm. This modified FCM clustering algorithm includes both the local spatial information from neighboring pixels, and the spatial Euclidian distance to the cluster’s center of gravity. For each area of interest, state-of-the-art texture descriptors are then computed and stored, along with corresponding color information. These texture descriptors and the color information are used for colorization of a grayscale image with similar textures. Given a grayscale image to be colorized, the segmentation and feature extraction processes are repeated. The texture descriptors are used to perform Content-Based Image Retrieval (CBIR). The colorization process is performed by Chroma replacement. This research finds numerous applications, ranging from classic film restoration and enhancement, to adding valuable information into medical and satellite imaging. Also, this can be used to enhance the detection of objects from x-ray images at the airports. 展开更多
关键词 Image Processing Pattern Recognition cOMPUTER VISION fuzzy c-means cLUSTERING GABOR
在线阅读 下载PDF
基于模糊C-Means的改进型KNN分类算法 被引量:12
18
作者 朱付保 谢利杰 +1 位作者 汤萌萌 朱颢东 《华中师范大学学报(自然科学版)》 CAS 北大核心 2017年第6期754-759,共6页
KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊C-means理论,通过对... KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊C-means理论,通过对样本数据进行聚类处理,用形成的子簇代替该子簇所有的样本集,以减少训练集的数量,从而减少KNN分类过程的工作量、提高分类效率,使KNN算法更好地应用于数据挖掘.通过理论分析和实验结果表明,论文所提算法在面对较大数据时能有效提高算法的效率和精确性,满足处理数据的需求. 展开更多
关键词 模糊c—Means 聚类 KNN分类
在线阅读 下载PDF
Paraspinal Muscle Segmentation in CT Images Using GSM-Based Fuzzy C-Means Clustering
19
作者 Yong Wei Xiuping Tao +1 位作者 Bin Xu Arend P. Castelein 《Journal of Computer and Communications》 2014年第9期70-77,共8页
Minimally Invasive Spine surgery (MISS) was developed to treat disorders of the spine with less disruption to the muscles. Surgeons use CT images to monitor the volume of muscles after operation in order to evaluate t... Minimally Invasive Spine surgery (MISS) was developed to treat disorders of the spine with less disruption to the muscles. Surgeons use CT images to monitor the volume of muscles after operation in order to evaluate the progress of patient recovery. The first step in the task is to segment the muscle regions from other tissues/organs in CT images. However, manual segmentation of muscle regions is not only inaccurate, but also time consuming. In this work, Gray Space Map (GSM) is used in fuzzy c-means clustering algorithm to segment muscle regions in CT images. GSM com- bines both spatial and intensity information of pixels. Experiments show that the proposed GSM- based fuzzy c-means clustering muscle CT image segmentation yields very good results. 展开更多
关键词 cT Image SEGMENTATION Gray Space Map (GSM) fuzzy c-means clustering MINIMALLY Invasive SPINE Surgery (MISS)
在线阅读 下载PDF
结合k-means的自动FCM图像分割方法 被引量:8
20
作者 刘万军 赵永刚 闵亮 《计算机工程与应用》 CSCD 北大核心 2015年第16期199-203,238,共6页
针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合k-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步k-me... 针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合k-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步k-means算法对大隶属度灰度更新模糊聚类中心,同时仅对小隶属度灰度使用快速FCM方法进行隶属度更新,迭代后得到初始聚类中心。利用改进隶属度的FCM算法进行最终聚类。实验表明,该方法获取初始聚类中心接近最终值,加速图像分割,并对噪声具有一定的鲁棒性。 展开更多
关键词 K均值 模糊c均值 图像分割 邻域信息
在线阅读 下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部