This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics ...In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of th...Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper.展开更多
The main aim of this paper is to develop an approach based on trapezoidal fuzzy numbers to optimize transportation problem in fuzzy environment.The present algorithm has representation of availability,demand and trans...The main aim of this paper is to develop an approach based on trapezoidal fuzzy numbers to optimize transportation problem in fuzzy environment.The present algorithm has representation of availability,demand and transportation cost as trapezoidal fuzzy numbers.This algorithm is found quicker in terms of runtime as comparison to fuzzy VAM discussed in[Kaur A.,Kumar A.,A new method for solving fuzzy transportation problem using ranking function,Appl.Math.Model.35:5652–5661,2011;Ismail Mohideen S.,Senthil Kumar P.,A comparative study on transportation problem in fuzzy environment,Int.J.Math.Res.2:151–158,2010].On the other hand this technique gives much better results than some classical methods like north-west corner and least cost method.Another benefit of this algorithm is that for certain transportation problems it directly gives optimal solution.It is one of the simplest methods to apply and perceive.Practical usefulness of the new method over other existing methods is demonstrated with two numerical examples.展开更多
In this paper,we investigate two new transportation models with breakability and restriction on transportation.Sometime in transportation process the items which are transported,have got damaged due to bad conditions ...In this paper,we investigate two new transportation models with breakability and restriction on transportation.Sometime in transportation process the items which are transported,have got damaged due to bad conditions of the road and vehicle.Here we consider the problem that there are so many plants and customers and the goods are transported in n-stages.We formulate two transportationmodels under crisp and fuzzy environment where we consider the transportation parameters are crisp and fuzzy in nature,respectively.We also consider the breakability(takes the deterministic value for the respectivemodels)at each stages.For the fuzzy model,generalized triangular fuzzy number and mean ofα-cut method are considered.Numerical illustration is provided to illustrate the developed models.展开更多
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
文摘In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
基金supported by National Social Science Foundation of China under the project of 18BGL003.
文摘Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper.
文摘The main aim of this paper is to develop an approach based on trapezoidal fuzzy numbers to optimize transportation problem in fuzzy environment.The present algorithm has representation of availability,demand and transportation cost as trapezoidal fuzzy numbers.This algorithm is found quicker in terms of runtime as comparison to fuzzy VAM discussed in[Kaur A.,Kumar A.,A new method for solving fuzzy transportation problem using ranking function,Appl.Math.Model.35:5652–5661,2011;Ismail Mohideen S.,Senthil Kumar P.,A comparative study on transportation problem in fuzzy environment,Int.J.Math.Res.2:151–158,2010].On the other hand this technique gives much better results than some classical methods like north-west corner and least cost method.Another benefit of this algorithm is that for certain transportation problems it directly gives optimal solution.It is one of the simplest methods to apply and perceive.Practical usefulness of the new method over other existing methods is demonstrated with two numerical examples.
文摘In this paper,we investigate two new transportation models with breakability and restriction on transportation.Sometime in transportation process the items which are transported,have got damaged due to bad conditions of the road and vehicle.Here we consider the problem that there are so many plants and customers and the goods are transported in n-stages.We formulate two transportationmodels under crisp and fuzzy environment where we consider the transportation parameters are crisp and fuzzy in nature,respectively.We also consider the breakability(takes the deterministic value for the respectivemodels)at each stages.For the fuzzy model,generalized triangular fuzzy number and mean ofα-cut method are considered.Numerical illustration is provided to illustrate the developed models.