A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynam...In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.展开更多
This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and der...This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and derivative (PD) gains. First, aiming to accomplish the whole closed-loop control with only position measurements, a linear filter is involved to generate a pseudo velocity error signal. Second, different from previous strategies, the arctangent function with error-gain is applied to ensure the boundedness of the torque control input, and an explicit system stability proof is made by using the theory of singularly perturbed systems. Moreover, a fuzzy self-tuning PD regulator, which guarantees the continuous stability of the overall closed-loop system, is added to obtain an adaptive performance in tackling the disturbances during tracking control. Simulation showed that the proposed controller gains more satisfactory tracking results than the others, with a better dynamic response performance and stronger anti-disturbance capability.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the s...One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characteriz...In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characterized by the strong fuzzy regularity of the equivalence relation. Finally, the concept of θ-part of fuzzy hypergroup is introduced to determine the necessary and sufficient condition for the equivalence relation θto be transitive.展开更多
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis...This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators i...In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.展开更多
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f...Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos.展开更多
Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope...Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.展开更多
This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in ...This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.展开更多
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
文摘In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.
基金Project (No. 2008C21106) supported by the Science and Technology Foundation of Zhejiang Province, China
文摘This paper concerns the problem of output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, and proposes a novel saturated OFT controller based on fuzzy self-tuning proportional and derivative (PD) gains. First, aiming to accomplish the whole closed-loop control with only position measurements, a linear filter is involved to generate a pseudo velocity error signal. Second, different from previous strategies, the arctangent function with error-gain is applied to ensure the boundedness of the torque control input, and an explicit system stability proof is made by using the theory of singularly perturbed systems. Moreover, a fuzzy self-tuning PD regulator, which guarantees the continuous stability of the overall closed-loop system, is added to obtain an adaptive performance in tackling the disturbances during tracking control. Simulation showed that the proposed controller gains more satisfactory tracking results than the others, with a better dynamic response performance and stronger anti-disturbance capability.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
文摘One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characterized by the strong fuzzy regularity of the equivalence relation. Finally, the concept of θ-part of fuzzy hypergroup is introduced to determine the necessary and sufficient condition for the equivalence relation θto be transitive.
文摘This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
基金funded by the University of Economics Ho Chi Minh City-UEH,Vietnam.
文摘In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.
基金funded by the Open Access Initiative of the University of Bremen and the DFG via SuUB Bremen.Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R348),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos.
文摘Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.
文摘This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.