期刊文献+
共找到461篇文章
< 1 2 24 >
每页显示 20 50 100
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
1
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
在线阅读 下载PDF
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:2
2
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
在线阅读 下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
3
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) algorithm hybrid Particle Swarm Optimization-Harmony search algorithm (HPSOHS)
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
4
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Solving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm 被引量:4
5
作者 Bao Lin Xiaoyan Sun Sana Salous 《Journal of Computer and Communications》 2016年第15期98-106,共10页
We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expe... We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing. 展开更多
关键词 Genetic algorithm hybrid Local search TSP
在线阅读 下载PDF
An Evolutionary Algorithm with Multi-Local Search for the Resource-Constrained Project Scheduling Problem
6
作者 Zhi-Jie Chen Chiuh-Cheng Chyu 《Intelligent Information Management》 2010年第3期220-226,共7页
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec... This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality. 展开更多
关键词 RESOURCE-CONSTRAINED Project SCHEDULING EVOLUTIONARY algorithmS Local search hybridIZATION
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
7
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于混合模型的多类型机场航班过站时间预测
8
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
考虑转移时间的多目标双资源柔性作业车间节能调度
9
作者 魏光艳 叶春明 《计算机集成制造系统》 北大核心 2025年第1期67-88,共22页
针对考虑工人和工件在机器间转移时间的多目标双资源柔性作业车间节能调度问题(MO-DFJESP),构建了以最小化最大完工时间、总能耗、总工人成本和最大工人工作量为优化目标的数学模型。该模型同时还考虑了工人的技能、熟练度和单位成本差... 针对考虑工人和工件在机器间转移时间的多目标双资源柔性作业车间节能调度问题(MO-DFJESP),构建了以最小化最大完工时间、总能耗、总工人成本和最大工人工作量为优化目标的数学模型。该模型同时还考虑了工人的技能、熟练度和单位成本差异。为了求解MO-DFJESP模型,提出一种多目标混合进化算法(MO-HEATS)。根据MO-DFJESP模型特点,设计了一种多维编码和解码方案以表示问题的可行解。基于sigmoid函数设计了自适应机制,以兼顾MO-HEATS算法的开发和探索能力,并结合禁忌搜索(TS)组件提升局部搜索能力。最后,在仿真算例上进行了消融实验和对比实验,实验结果验证了自适应机制和TS组件对MO-HEATS算法性能具有明显提升作用,且MO-HEATS算法对求解MO-DFJESP模型具有显著优势。 展开更多
关键词 双资源柔性作业车间调度 多目标 混合进化算法 禁忌搜索 转移时间 节能调度
在线阅读 下载PDF
改进蝙蝠算法求解多目标混合车间调度问题
10
作者 李轩 李仁旺 《轻工机械》 2025年第1期98-104,共7页
针对混合车间调度问题(Hybrid Flowshop Scheduling Problem,HFSP)求解规模大、易陷入局部最优等,笔者提出了一种改进蝙蝠算法(Improved Bat Algorithm,IBA)。以最小化总完工时间、最小化总能耗和平衡机器负载为目标函数,算法中加入了... 针对混合车间调度问题(Hybrid Flowshop Scheduling Problem,HFSP)求解规模大、易陷入局部最优等,笔者提出了一种改进蝙蝠算法(Improved Bat Algorithm,IBA)。以最小化总完工时间、最小化总能耗和平衡机器负载为目标函数,算法中加入了基于指数递减策略的动态惯性权重,并结合包括自适应参数调整、混合局部搜索以及全局搜索策略等多种优化策略,以提高调度效率和优化调度结果。笔者将改进蝙蝠算法与遗传算法(Genetic Algorithm,GA)和蝙蝠算法(Bat Algorithm,BA)进行了对比实验,结果表明:改进蝙蝠算法策略合理有效,且在求得最优解时表现更好。 展开更多
关键词 调度 混合车间 改进蝙蝠算法 自适应参数 局部搜索 动态惯性权重
在线阅读 下载PDF
基于和声搜索遗传算法的桁架结构形状优化方法
11
作者 谢军 张华帅 +2 位作者 林书钦 庞博蕾 阎杰 《机械强度》 北大核心 2025年第3期151-158,共8页
为改善传统设计理念和遗传算法优化不足,促进桁架结构形状优化的发展与创新,依据和声搜索算法和遗传算法的基本原理,提出一种新型混合遗传算法-和声搜索遗传算法(遗传算法与和声搜索算法的混合是通过在遗传算法操作后嵌入和声搜索算子)... 为改善传统设计理念和遗传算法优化不足,促进桁架结构形状优化的发展与创新,依据和声搜索算法和遗传算法的基本原理,提出一种新型混合遗传算法-和声搜索遗传算法(遗传算法与和声搜索算法的混合是通过在遗传算法操作后嵌入和声搜索算子),同时对遗传算法中交叉变异分三种情况进行自适应改进,引入精英主义等改进措施,并对和声搜索算法进行离散变量和连续变量混合变量处理,建立了基于和声搜索混合遗传算法的桁架结构形状优化方法。在优化过程中,对节点坐标和截面面积两个不同类型的设计变量进行统一考虑,解决了两类变量耦合困难的问题。通过两个典型算例分析,结果表明,和声搜索遗传算法(Harmony Search Hybrid Genetic Algorithm,HS-GA)具有高效的收敛速度,全局能力强;与遗传算法(Genetic Algorithm,GA)、启发式粒子群优化(Heuristic Particle Swarm Optimization,HPSO)算法,以及其他优化算法相比,优化效果明显,是一种适用于桁架结构形状优化的方法。 展开更多
关键词 形状优化 和声搜索算法 混合遗传算法 自适应遗传算法
在线阅读 下载PDF
带忽略工序的多目标批量流混合流水车间调度
12
作者 李浩平 朱成彪 +5 位作者 陈心怡 彭巍 孟荣华 金朱鸿 杜昕毅 蔡浏阳 《计算机集成制造系统》 北大核心 2025年第1期89-101,共13页
针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框... 针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框架,外层进行柔性分批,内层搜索排序及调度方案。针对批量分割、工件批排序、机器分配3个问题,设计基于批量、工序和机器的三段式编码,内层将狼群算法的分级和游走策略引入粒子群算法,设计了一种基于PBX(Position-based Crossover)交叉操作的围攻策略以提高算法的局部搜索及寻优能力。通过仿真实验并与几种启发式算法进行对比及实例验证,说明了调度模型和算法的可行性和优越性。 展开更多
关键词 批量流 混合流水车间调度 忽略工序 改进PSO-GA混合算法 双层搜索框架 柔性分批
在线阅读 下载PDF
基于改进麻雀搜索算法的USV路径规划
13
作者 李君恩 丁天明 +1 位作者 韩喜红 刘虎 《舰船科学技术》 北大核心 2025年第5期153-158,共6页
针对解决无人水面艇(Unmanned Surface Vehicle,USV)路径规划的问题,提出一种改进的麻雀搜索算法。因原始麻雀搜索算法存在种群初始化方式简单,同时算法缺少变异机制,迭代后期种群多样性变差,易陷入局部最优等问题。提出混合改进策略,... 针对解决无人水面艇(Unmanned Surface Vehicle,USV)路径规划的问题,提出一种改进的麻雀搜索算法。因原始麻雀搜索算法存在种群初始化方式简单,同时算法缺少变异机制,迭代后期种群多样性变差,易陷入局部最优等问题。提出混合改进策略,分别为佳点集初始化种群、螺旋搜索策略更新发现者、Tent混沌扰动策略更新跟随者,莱维飞行策略更新警戒者。实验结果表明,在测试函数中算法性能良好,收敛速度快、精度高,在仿真对比实验中规划出的路径质量高。研究成果对USV及其他领域路径规划问题具有借鉴意义。 展开更多
关键词 无人水面艇 全局路径规划 麻雀搜索算法 混合改进策略
在线阅读 下载PDF
时变路网下同时配集货车辆-无人车协同配送路径问题
14
作者 范厚明 宋彬彬 +1 位作者 王琪 任晓雪 《同济大学学报(自然科学版)》 北大核心 2025年第4期589-599,共11页
针对时变路网下同时配集货车辆-无人车协同配送路径问题,综合考虑配送区域路网交通信息、客户同时配集货需求、客户软时间窗、电池荷电状态等因素,以派遣成本、能耗成本以及时间窗惩罚成本之和最小为目标建立模型。设计了混合遗传变邻... 针对时变路网下同时配集货车辆-无人车协同配送路径问题,综合考虑配送区域路网交通信息、客户同时配集货需求、客户软时间窗、电池荷电状态等因素,以派遣成本、能耗成本以及时间窗惩罚成本之和最小为目标建立模型。设计了混合遗传变邻域搜索算法,采用轮盘赌选择策略,引入自适应邻域搜索次数策略,在算法不同时期设计不同的搜索次数以加快算法收敛速度、提高求解质量。通过多组算例求解验证了模型的正确性和算法的有效性,并对不同车辆-无人车协同配送方式、不同车辆行驶速度以及车辆和无人车电池的不同最低荷电状态组合等场景的变化进行了敏感性分析。结果表明,车辆在停靠点不等待无人车的协同配送方式能够有效降低配送成本;考虑车辆速度时变可以更好地适应不同路况,能够有效降低配送成本并提高配送效率;车辆和无人车的最低荷电状态越低,配送成本越小,这一结果对未来研发更高性能电池具有重要意义。 展开更多
关键词 时变路网 同时配集货 车辆-无人车 混合遗传变邻域搜索算法
在线阅读 下载PDF
基于改进混合A^(*)算法的自动泊车路径规划方法研究
15
作者 白俊卿 魏雪涛 张红猛 《计算机测量与控制》 2025年第1期226-234,共9页
为了解决在自动驾驶过程中短距离自动泊车场景下,受环境复杂性影响导致传统的A^(*)算法和RS曲线加速搜索算法难以应用的问题,提出了一种加入反向搜索算法的改进混合A^(*)算法;利用地图栅格法和A^(*)算法计算启发值,通过检测车身轮廓线... 为了解决在自动驾驶过程中短距离自动泊车场景下,受环境复杂性影响导致传统的A^(*)算法和RS曲线加速搜索算法难以应用的问题,提出了一种加入反向搜索算法的改进混合A^(*)算法;利用地图栅格法和A^(*)算法计算启发值,通过检测车身轮廓线与简化后的障碍物线是否相交判断二者能否相撞,以节省搜索时间;通过控制RS曲线的扩展方向数量,保证路径的平滑性;经MATLAB仿真垂直入库和侧方泊车场景,对改进算法与传统算法进行了对比分析,验证了同等条件下改进的混合A^(*)算法在两种仿真场景的平均搜索时间上分别减少8.18%和20.53%,且能产生更短、更平滑的路径,从而验证了所提基于反向搜索算法的混合A^(*)算法的优越性。 展开更多
关键词 自动泊车 路径规划 反向搜索 混合A~*算法 障碍物距离代价
在线阅读 下载PDF
A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem
16
作者 Lin Huang Shikui Zhao Yingjie Xiong 《Complex System Modeling and Simulation》 EI 2024年第1期50-66,共17页
The research on complex workshop scheduling methods has important academic significance and has wide applications in industrial manufacturing.Aiming at the job shop scheduling problem,a hybrid algorithm based on compr... The research on complex workshop scheduling methods has important academic significance and has wide applications in industrial manufacturing.Aiming at the job shop scheduling problem,a hybrid algorithm based on comprehensive search mechanisms(HACSM)is proposed to optimize the maximum completion time.HACSM combines three search methods with different optimization scales,including fireworks algorithm(FW),extended Akers graphical method(LS1+_AKERS_EXT),and tabu search algorithm(TS).FW realizes global search through information interaction and resource allocation,ensuring the diversity of the population.LS1+_AKERS_EXT realizes compound movement with Akers graphical method,so it has advanced global and local search capabilities.In LS1+_AKERS_EXT,the shortest path is the core of the algorithm,which directly affects the encoding and decoding of scheduling.In order to find the shortest path,an effective node expansion method is designed to improve the node expansion efficiency.In the part of centralized search,TS based on the neighborhood structure is used.Finally,the effectiveness and superiority of HACSM are verified by testing the relevant instances in the literature. 展开更多
关键词 job shop scheduling fireworks algorithm tabu search Akers graphical hybrid scheduling algorithms
原文传递
Hybrid Grid DSMC Method for Chemical Nonequilibrium with Rarefied Flow Heating 被引量:1
17
作者 屈程 王江峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期408-414,共7页
The influence of chemical nonequilibrium on the thermal characteristics is explored by using the 2Dhybrid grid direct simulation Monte Carlo(DSMC)parallel method.An improved molecule search algorithm is proposed,which... The influence of chemical nonequilibrium on the thermal characteristics is explored by using the 2Dhybrid grid direct simulation Monte Carlo(DSMC)parallel method.An improved molecule search algorithm is proposed,which can preserve the high efficiency of area search algorithm.This method can overcome the defects of area search algorithm,and give all information about molecules hitting surface.The heat flux calculation method for a rarefied hypersonic flow is established.In addition,the testing methods of chemical reaction probability for five species of mixed gas with limited speed chemical reactions are also selected.To validate the effectiveness of the present method,hypersonic flow around a cylinder is firstly simulated,and subsequently numerical simulations of the heat flux and flow field characteristics around the blunt body at different heights are carried out in two different cases:the thermal nonequilibrium condition and the thermochemical nonequilibrium condition.Numerical results demonstrate the validity and reliability of the proposed methods. 展开更多
关键词 hybrid grid chemical nonequilibrium heat flux search algorithm DSMC parallel algorithm
在线阅读 下载PDF
Enhanced Heap-Based Optimizer Algorithm for Solving Team Formation Problem
18
作者 Nashwa Nageh Ahmed Elshamy +2 位作者 Abdel Wahab Said Hassan Mostafa Sami Mustafa Abdul Salam 《Computers, Materials & Continua》 SCIE EI 2022年第12期5245-5268,共24页
Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r... Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum. 展开更多
关键词 Team formation problem optimization problem genetic algorithm heap-based optimizer simulated annealing hybridization method chaotic local search
在线阅读 下载PDF
Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method for Solving Constrained Real-Parameters
19
作者 Ngoc-Tam Bui Hieu Pham Hiroshi Hasegawa 《Journal of Mechanics Engineering and Automation》 2013年第9期551-559,共9页
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-... In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints. 展开更多
关键词 Differential evolution hybrid algorithms evolutionary computation global search local search simplex method.
在线阅读 下载PDF
混合白鲸优化算法求解柔性作业车间调度问题 被引量:4
20
作者 孟冠军 黄江涛 魏亚博 《计算机工程与应用》 CSCD 北大核心 2024年第12期325-333,共9页
针对柔性作业车间调度问题(flexible job-shop scheduling problem,FJSP),提出一种混合白鲸优化算法(hybrid beluga whale optimization,HBWO)对其求解,旨在最小最大化完工时间。采用既定策略改进标准白鲸优化算法(beluga whale optimiz... 针对柔性作业车间调度问题(flexible job-shop scheduling problem,FJSP),提出一种混合白鲸优化算法(hybrid beluga whale optimization,HBWO)对其求解,旨在最小最大化完工时间。采用既定策略改进标准白鲸优化算法(beluga whale optimization,BWO),加快其收敛速度;基于机器选择和工序排序问题设计双层编码方案,解决FJSP离散化问题;采用主动编码及种群初始化策略,提高求解质量;基于工序的开始和结束时间确定关键路径和关键块,注重各工序时间维度;引入贪心思想至基于关键路径的混合变邻域搜索策略中,加大勘测搜索空间及减少无效搜索;此外,引入遗传算子防止算法陷入局部最优;通过35个标准算例的仿真实验与分析,证明了算法在求解FJSP问题中具有有效性。 展开更多
关键词 柔性作业车间 白鲸优化算法 最大完工时间 离散位置转化 混合变邻域策略 贪心思想
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部